Supporting Information for:

Acetalization of Aldehydes and Ketones over H₄[SiW₁₂O₄₀] and H₄[SiW₁₂O₄₀]/SiO₂

Shen Zhao, Yueqing Jia, Yu-Fei Song*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

List of contents

Table S1. ICP analysis of H-SiW₁₂, fresh H-SiW₁₂/SiO₂ and reused H-SiW₁₂/SiO₂.

Table S2. Assignments of FT-IR spectra of H-SiW₁₂, SiO₂ and H-SiW₁₂/SiO₂.

Table S3. Assignments of ²⁹Si CP/MAS NMR spectra of H-SiW₁₂, SiO₂ and H-SiW₁₂/SiO₂.

Table S4. The yields at different temperature and Ea for acetalization of various substrates with ethylene glycol

catalyzed by H-Si W_{12} under solvent-free conditions.

Table S5. Acetalization of various aldehydes and ketones with 1,3-propanediol catalyzed by H-Si W_{12} at 60 °C under solvent-free conditions.

Table S6. Acetalization of various aldehydes and ketones with 1,3-propanediol catalyzed by $H-SiW_{12}/SiO_2$ at 60 °C under solvent-free conditions.

Table S7. ICP analysis of reaction filtrate before and after reaction catalyzed by H-SiW₁₂.

Table S8. ICP analysis of reaction filtrate before and after reaction catalyzed by H-SiW₁₂/SiO₂.

Table S9. H-SiW₁₂/SiO₂-recycling and reusing experiments of acetalization of benzaldehyde with 1,3-propanediol.

Figure S1. Yield and $\ln(C_t/C_0)$ as functions of reaction time at (A) 25 °C, (B) 40 °C, (C) 50 °C, (D) 60 °C and (E) 70 °C. Reaction conditions: cyclohexanone (1 mmol), H-SiW₁₂ (0.25 mol% to cyclohexanone), ethylene glycol (1.5 mmol), 6 hours.

Figure S2. Yield and $\ln(C_t/C_0)$ as functions of reaction time at (A) 25 °C, (B) 40 °C, (C) 50 °C, (D) 60 °C and (E) 70 °C. Reaction conditions: 2-methylbenzaldehyde (1 mmol), H-SiW₁₂ (0.25 mol% to 2-methylbenzaldehyde), ethylene glycol (1.5 mmol), 6 hours.

Figure S3. Powder XRD patterns (A) and FT-IR spectra (B) of H-SiW₁₂/SiO₂, SiO₂ and H-SiW₁₂.

Figure S4. Adsorption-desorption isotherms (A) and pore size distribution curves (B) of $H-SiW_{12}/SiO_2$, SiO_2 and $H-SiW_{12}$.

Figure S5. NH₃-TPD profiles of H-SiW₁₂/SiO₂ and H-SiW₁₂.

Figure S6. The proposed mechanism of acetalization of aldehydes and ketones with diols (ethylene glycol and 1,3-propanediol) catalyzed by H-Si W_{12} and H-Si W_{12} /SiO₂.

Catabut	Found (%)	Calcd. (%)
Catalyst	W	W
H-SiW ₁₂	76.48	76.65
fresh H-SiW ₁₂ /SiO ₂	6.92	6.98
reused H-SiW ₁₂ /SiO ₂	6.90	6.98

Table S1. ICP analysis of of H-SiW $_{12}$, fresh H-SiW $_{12}$ /SiO $_2$ and reused H-SiW $_{12}$ /SiO $_2$.

Table S2. Assignments of FT-IR spectra of H-SiW₁₂, SiO₂ and H-SiW₁₂/SiO₂.^a

H-SiW ₁₂	SiO_2	H-SiW ₁₂ /SiO ₂	Assignments
3445	3448	3436	O-H asym. str.
2926	2925	2927	O-H scissoring
1100	1097	1102	Si-O asym. str.
1046			W-O _d scissoring
934		935	W-O _d asym. str.
891		893	W-O _b -W asym. str.
790		792	W-O _c -W asym. str.
715		716	W-O _c -W asym. str.
471	469	472	Si-O bending

^a asym. str.: asymmetric stretching.

Table S3. Assignments of ²⁹Si CP/MAS NMR spectra of H-SiW₁₂, SiO₂ and H-SiW₁₂/SiO₂.

H-SiW ₁₂ /SiO ₂ (ppm)	SiO ₂ (ppm)	H-SiW ₁₂ (ppm)	Assignment
-86.032		-84.995	$H_4SiW_{12}O_{40}$
-102.880	-101.488		(SiO) ₃ SiOH (Q ³)
-111.932	-110.800		Si(OSi) ₄ (Q ⁴)

 Entry	Alcohol	Substrate	Product	Temperature	Yield	Activation energy
	7 Heolioi	Substrate	Tioduct	(°C)	(%)	(kJ·mol ⁻¹) ^b
		x	× ()			
1		× u	0	25	37	10.0
2		X = H	X = H	60	73	19.2
3			N 21(25	49	15.0
4		X = 2-Me	X = 2-Me	60	81	15.9
5		V 2M	V 2M	25	36	10.0
6		X = 3-Me	X = 3-Me	60	73	19.0
7		V 2 CI	V 2 Cl	25	73	0.0
8		X = 2 - CI	X = 2 - C1	60	95	8.8
9		$\mathbf{V} = 2 \mathbf{C} 1$	$\mathbf{V} = 2 \mathbf{C} 1$	25	69	10.1
10		X = 3 - CI	X = 3 - CI	60	90	10.1
11		$\mathbf{V} = \mathbf{A} \mathbf{C} \mathbf{I}$	$\mathbf{V} = \mathbf{A} \mathbf{C} \mathbf{I}$	25	58	12.2
12		A – 4-Cl	A – 4-Cl	60	80	13.5
13		$\mathbf{V} = 2 \mathbf{D}_{\mathbf{r}}$	$\mathbf{V} = 1 \mathbf{D}_{\mathbf{r}}$	25	70	0.7
14		X = 2-Br	X = 2-Br	60	93	9.7
15		$V = 2 D_{\pi}$	$V = 2 D_{\pi}$	25	67	10.6
16		л – э - Ы	$\Lambda = 3-BI$	60	85	10.6
17		$\mathbf{V} = 1 \mathbf{D}_{\mathbf{r}}$	$\mathbf{V} = \mathbf{A} \mathbf{D} \mathbf{r}$	25	68	11.0
18		$\Lambda = 4$ -BI	$\Lambda = 4$ -BI	60	89	11.0
19		$\mathbf{V} = 2$ NO	$\mathbf{V} = 2 \mathbf{N} \mathbf{O}$	25	81	6.6
20		$X = 2 - NO_2$	$\Lambda = 2 - INO_2$	60	93	0.0
21	но	V = 2 NO	V = 2 NO	25	83	5.0
22		$\Lambda = 3-100_2$	$\Lambda = 3-100_2$	60	94	3.9
		$\mathbf{V} = 4 \mathbf{NO}$	$\mathbf{V} = 4 \mathbf{NO}$	25	86	5 1
23		$\Lambda = 4 - 1 NO_2$	$\Lambda = 4-100_2$	60	>99.9	5.1
24		~	R-C			
24		R	0			
25		$\mathbf{R} = n \cdot \mathbf{C} \cdot \mathbf{H}_{11}$	$\mathbf{R} = n \cdot \mathbf{C} \cdot \mathbf{H}_{11}$	25	89	4 2
26				60	>99.9	7.2
27		$\mathbf{R} = n \cdot \mathbf{C} \cdot \mathbf{H}_{12}$	$\mathbf{R} = n \cdot \mathbf{C} \cdot \mathbf{H}_{12}$	25	85	54
28		<i>n n c</i> ₀ <i>n</i> ₁		60	98	5.1
29		$\mathbf{R} = n \cdot \mathbf{C}_7 \mathbf{H}_{15}$	$R = n - C_7 H_{15}$	25	82	62
30			<i>n n c</i> / <i>n</i> ₁	60	99	0.2
31		$R = n - C_{\circ} H_{17}$	$R = n - C_{\circ} H_{17}$	25	79	7.6
32		<i>n n c</i> ₈ <i>n</i> ₁ /		60	99	1.0
33		$R = n - C_0 H_{10}$	$\mathbf{R} = n - C_0 H_{10}$	25	76	83
34		it weging	it weging	60	98	0.5
35		$\bigcap \circ$	\bigcirc	25	88	4.6
36		\sim		60	97	
37		r [™]	$\langle \gamma \gamma$	25	92	3.3
38		\checkmark	\sim	60	94	
39		T/F°	(JA	25	75	07
40		\mathcal{A}		60	99	0./

Table S4. The yields at different temperature and E_a for acetalization of various substrates with ethylene glycol catalyzed by H-SiW₁₂ under solvent-free conditions.^a

^a Reaction conditions: substrate (1 mmol), H-SiW₁₂ (0.25 mol% to substrate), ethylene glycol (1.5 mmol), 6 hours. Yields were determined by GC analysis using reference standards. Assignments of corresponding products were analyzed by ¹H-NMR. ^b These values have been calculated by Arrhenius equation: $lnk = (lnA - E_a)/RT$.

Entry	Donor	Acceptor	Product	Yield(%)
		x	×	
1		X = H	X = H	95
2		X = 2-Me	X = 2-Me	96
3		X = 3-Me	X = 3-Me	96
4		X = 4-Me	X = 4-Me	92
5		X = 2-MeO	X = 2-MeO	87
6		X = 3-MeO	X = 3-MeO	95
7		X = 4-MeO	X = 4-MeO	75
8		X = 2 - Cl	X = 2 - Cl	99
9		X = 3-C1	X = 3-C1	99
10		X = 4-Cl	X = 4-Cl	99
11		X = 2-Br	X = 2-Br	99
12		X = 3-Br	X = 3-Br	99
13	но	X = 4-Br	X = 4-Br	99
14		$X = 2-NO_2$	$X = 2-NO_2$	>99.9
15		$X = 3-NO_2$	$X = 3-NO_2$	>99.9
16		$X = 4-NO_2$	$X = 4-NO_2$	87
		R	R-C	
17		$\mathbf{R} = n \cdot \mathbf{C}_5 \mathbf{H}_{11}$	$\mathbf{R} = n \cdot \mathbf{C}_5 \mathbf{H}_{11}$	>99.9
18		$\mathbf{R} = n \cdot \mathbf{C}_6 \mathbf{H}_{13}$	$\mathbf{R} = n \cdot \mathbf{C}_6 \mathbf{H}_{13}$	97
19		$\mathbf{R} = n \cdot \mathbf{C}_7 \mathbf{H}_{15}$	$\mathbf{R} = n \cdot \mathbf{C}_7 \mathbf{H}_{15}$	95
20		$\mathbf{R} = n \cdot \mathbf{C}_8 \mathbf{H}_{17}$	$\mathbf{R} = n \cdot \mathbf{C}_8 \mathbf{H}_{17}$	96
21		$\mathbf{R} = n \cdot \mathbf{C}_9 \mathbf{H}_{19}$	$\mathbf{R} = n \cdot \mathbf{C}_9 \mathbf{H}_{19}$	92
22		$\bigcirc \frown \frown \frown \frown \frown$	$\bigcirc + \bigcirc \bigcirc$	99
23		↓, o		85

Table S5. Acetalization of various aldehydes and ketones with 1,3-propanediol catalyzed by $H-SiW_{12}$ at 60 °C under solvent-free conditions.^a

^a Reaction conditions: substrate (1 mmol), H-SiW₁₂ (0.25 mol% to substrate), 1,3-propanediol (1.5 mmol), 60 °C, 6 hours. Yields were determined by GC analysis using reference standards. Assignments of corresponding products were analyzed by ¹H-NMR.

Entry	Donor	Acceptor	Product	Yield(%) ^b
		x	×	
1		X = H	X = H	95(91)
2		X = 2-Me	X = 2-Me	96(94)
3		X = 3-Me	X = 3-Me	96(93)
4		X = 4-Me	X = 4-Me	92(89)
5		X = 2-MeO	X = 2-MeO	87(83)
6		X = 3-MeO	X = 3-MeO	95(90)
7		X = 4-MeO	X = 4-MeO	75(71)
8		X = 2 - Cl	X = 2 - Cl	99(97)
9		X = 3-C1	X = 3-Cl	99(98)
10		X = 4-Cl	X = 4-Cl	99(96)
11		X = 2-Br	X = 2-Br	99(98)
12		X = 3-Br	X = 3-Br	99(96)
13	но	X = 4-Br	X = 4-Br	99(98)
14		$X = 2-NO_2$	$X = 2-NO_2$	>99.9(99)
15		$X = 3-NO_2$	$X = 3-NO_2$	>99.9(99)
16		$X = 4-NO_2$	$X = 4-NO_2$	87(84)
		R ^{CO} O	R - Co->	
17		$\mathbf{R} = n \cdot \mathbf{C}_5 \mathbf{H}_{11}$	$\mathbf{R} = n \cdot \mathbf{C}_5 \mathbf{H}_{11}$	>99.9(99)
18		$\mathbf{R} = n \cdot \mathbf{C}_6 \mathbf{H}_{13}$	$\mathbf{R} = n \cdot \mathbf{C}_6 \mathbf{H}_{13}$	97(94)
19		$\mathbf{R} = n \cdot \mathbf{C}_7 \mathbf{H}_{15}$	$\mathbf{R} = n \cdot \mathbf{C}_7 \mathbf{H}_{15}$	95(92)
20		$\mathbf{R} = n \cdot \mathbf{C}_8 \mathbf{H}_{17}$	$\mathbf{R} = n \cdot \mathbf{C}_8 \mathbf{H}_{17}$	96(94)
21		$\mathbf{R} = n \cdot \mathbf{C}_9 \mathbf{H}_{19}$	$\mathbf{R} = n \cdot \mathbf{C}_9 \mathbf{H}_{19}$	92(88)
22		$\bigcirc \frown \frown \frown \frown \frown$	$\bigcirc - \diamondsuit >$	99(96)
23		$\int \int f^{\circ}$		85(81)

Table S6. Acetalization of various aldehydes and ketones with 1,3-propanediol catalyzed by $H-SiW_{12}/SiO_2$ at 60 °C under solvent-free conditions.^a

^a Reaction conditions: substrate (1 mmol), H-SiW₁₂/SiO₂ (0.0225 mol% to substrate), 1,3-propanediol (1.5 mmol), 60 °C, 6 hours. Yields were determined by GC analysis using reference standards. Assignments of corresponding products were analyzed by ¹H-NMR. ^b The values in parentheses are the isolated yields.

Table S7. ICP analysis of reaction filtrate before and after	reaction cataly	zed by H-SiW ₁₂ .ª
--	-----------------	-------------------------------

Reaction filtrate	Si (ppm)	W (ppm)	
Before reaction	<0.01	< 0.01	
After reaction	0.04	0.49	

^a Reaction conditions: benzaldehyde (1 mmol), H-SiW₁₂ (0.25 mol% to substrate), 1,3-propanediol (1.5 mmol), 60 °C, 6 hours.

Table S8. ICP anal	ysis of reaction filtrate before	and after reaction catalyzed by	H-SiW ₁₂ /SiO ₂ . ^a

Reaction filtrate	Si (ppm)	W (ppm)	
Before reaction	< 0.01	<0.01	
After reaction	< 0.01	<0.01	
	1) 11 G'111 /G'10 /0 0005 10/ (1 + +) 1.0	1. 1 (1.5 1) (0.40 (1	

^a Reaction condtions: benzaldehyde (1 mmol), H-SiW₁₂/SiO₂ (0.0225 mol% to substrate), 1,3-propanediol (1.5 mmol), 60 °C, 6 hours.

Table S9. H-SiW₁₂/SiO₂-recycling and reusing experiments of acetalization of benzaldehyde with 1,3-propanediol.^a

Entry	Recycle time	Catalyst	Yield (%)	Catalyst Recovery (%)
1	1	H-SiW ₁₂ /SiO ₂	94	98
2	2	$H-SiW_{12}/SiO_2$	94	98
3	3	$H-SiW_{12}/SiO_2$	94	98
4	4	$H-SiW_{12}/SiO_2$	94	98
5	5	$H-SiW_{12}/SiO_2$	94	97
6	6	$H-SiW_{12}/SiO_2$	94	97
7	7	$H-SiW_{12}/SiO_2$	93	97
8	8	$H-SiW_{12}/SiO_2$	93	96
9	9	$H-SiW_{12}/SiO_2$	93	96
10	10	$H-SiW_{12}/SiO_2$	93	96

^a Reaction conditions: benzaldehyde (1 mmol), H-SiW₁₂/SiO₂ (0.0225 mol% to benzaldehyde), 1,3-propanediol (1.5 mmol), 60 °C, 6 hours. Yields were determined by GC analysis using reference standards. Assignments of corresponding products were analyzed by ¹H-NMR.

Figure S1. Yield and $ln(C_t/C_0)$ as functions of reaction time at (A) 25 °C, (B) 40 °C, (C) 50 °C, (D) 60 °C and (E) 70 °C. Reaction conditions: cyclohexanone (1 mmol), H-SiW₁₂ (0.25 mol% to cyclohexanone), ethylene glycol (1.5 mmol), 6 hours.

Figure S2. Yield and $\ln(C_t/C_0)$ as functions of reaction time at (A) 25 °C, (B) 40 °C, (C) 50 °C, (D) 60 °C and (E) 70 °C. Reaction conditions: 2-methylbenzaldehyde (1 mmol), H-SiW₁₂ (0.25 mol% to 2-methylbenzaldehyde), ethylene glycol (1.5 mmol), 6 hours.

Figure S3. Powder XRD patterns (A) and FT-IR spectra (B) of H-SiW₁₂/SiO₂, SiO₂ and H-SiW₁₂.

Figure S4. Adsorption-desorption isotherms (A) and pore size distribution curves (B) of $H-SiW_{12}/SiO_2$, SiO_2 and $H-SiW_{12}$.

Figure S5. NH_3 -TPD profiles of H-Si W_{12} /Si O_2 and H-Si W_{12} .

Figure S6. The proposed mechanism of acetalization of aldehydes and ketones with diols (ethylene glycol and 1,3-propanediol) catalyzed by $H-SiW_{12}$ and $H-SiW_{12}/SiO_2$.