## SUPPPORTING INFORMATION

# Cu-MOFs as active, selective and reusable catalysts for oxidative C-O bond coupling reactions by direct C-H activation of formamides, aldehydes and ethers

I. Luz, A. Corma\* and F. X. Llabrés i Xamena\*

Instituto de Tecnología Química, Universidad Politécnica de Valencia, Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos, s/n, 46022 Valencia, Spain

## **1. CHARACTERIZATION OF THE MOFs**

| 3. COMPARISON OF FRESH AND USED MOFs                                                                    | p. 10 |
|---------------------------------------------------------------------------------------------------------|-------|
| 2. PREPARATION OF Cu-CONTAINING ZEOLITES                                                                | p. 9  |
| 1.4. [Cu(BDC)·dmf]: Elemental analysis, TGA, FTIR, XRD                                                  | p. 7  |
| <b>1.3.</b> [Cu <sub>3</sub> (BTC) <sub>2</sub> ·3H <sub>2</sub> O]: Elemental analysis, TGA, FTIR, XRD | p. 6  |
| <b>1.2.</b> [Cu(im) <sub>2</sub> ]: Elemental analysis, TGA, FTIR, XRD                                  | p. 4  |
| <b>1.1.</b> [Cu(2-pymo) <sub>2</sub> ]·2.25 H <sub>2</sub> O: Elemental analysis, TGA, FTIR, XRD        | p. 2  |

## **1. CHARACTERIZATION OF THE MOFs**

## 1.1. [Cu(2-pymo)<sub>2</sub>]·2.25 H<sub>2</sub>O

**Elemental analysis**. Calcd for CuC<sub>8</sub>H<sub>10.5</sub>N<sub>4</sub>O<sub>4.25</sub>: C, 32.6; H, 3.6; N, 19.0; Cu, 21.6. Found: C, 32.4; H, 3.4; N, 19.0; Cu, 22.2.

Fig. S1. Thermogravimetric analysis (air flux, 10°/min)



Fig. S2. FTIR (ATR)





Fig. S4. N<sub>2</sub> adsorption isotherm



## 1.2. [Cu(im)<sub>2</sub>]

Elemental analysis. Calcd for Cu(C<sub>3</sub>H<sub>3</sub>N<sub>2</sub>)<sub>2</sub>: C, 36.5; H, 3.1; N, 28.3; Cu, 32.1.

Found: C, 36.1; H, 3.5; N, 27.2; Cu, 32.4.

Fig. S5. Thermogravimetric analysis (air flux, 10°/min)



Fig. S6. FTIR (ATR)





Fig. S8. N<sub>2</sub> adsorption isotherm



1.3. [Cu<sub>3</sub>(BTC)<sub>2</sub>·3H<sub>2</sub>O]

**Elemental analysis**. Calcd for Cu<sub>3</sub>C<sub>18</sub>H<sub>12</sub>O<sub>15</sub>: C, 32.7; H, 1.8; Cu, 28.9. Found: C, 32.4; H, 1.6; Cu, 28.6.











## 1.4. [Cu(BDC)·dmf]

**Elemental analysis**. Calcd for CuC<sub>11</sub>H<sub>11</sub>NO<sub>5</sub>: C, 43.9; H, 3.7; N, 4.6; Cu, 21.1. Found: C, 43.3; H, 3.7; N, 4.6; Cu, 22.2.

Fig. S12. Thermogravimetric analysis (air flux, 10°/min)





Fig. S14. XRD (Cu Ka radiation)



#### 2. PREPARATION OF CU-CONTAINING ZEOLITES

Zeolites USY and ZSM-5 were commercial samples obtained from Zeolyst International. Prior to ion exchange, all zeolites were rinsed with a 0,04 M solution of NaNO<sub>3</sub> in order to have the materials in the sodium form. The metal exchange was carried out by immersing the Na-zeolites in an aqueous solution of the desired amount of Cu(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O, with a zeolite/liquid ratio of 10 g/l and under stirring for 24 h at room temperature. After that, the zeolite was filtered and washed, and then calcined at 823 K for 3 hours. Figures S15 and S16 show the XRD (Cu K $\alpha$  radiation) of the calcined samples.

Fig. S15. XRD (Cu Ka radiation) of Cu-USY



Fig. S16. XRD (Cu Ka radiation) of Cu- ZSM-5



#### 3. COMPARISON OF FRESH AND USED MOFs

**Fig. S17.** XRD (Cu K $\alpha$  radiation) of fresh [Cu(2-pymo)<sub>2</sub>] and after catalyzing the oxidative coupling of 2-hydroxyacetophenone and DMF (3<sup>rd</sup> catalytic cycle)



**Fig. S18.** XRD (Cu K $\alpha$  radiation) of fresh [Cu(im)<sub>2</sub>] and after catalyzing the oxidative coupling of 2-hydroxyacetophenone and DMF (3<sup>rd</sup> catalytic cycle)



**Fig. S19**. Hot filtration test during the reaction of 2-hydroxyacetophenone and DMF in the presence of  $[Cu(2-pymo)_2]$ .



**Figure S20.** Progressive degradation of the structure of  $[Cu(2-pymo)_2]$  during the oxidative coupling of 2-hydroxyacetophenone and dioxane. XRD pattern (Cu K $\alpha$  radiation) of fresh  $[Cu(2-pymo)_2]$  and the material recovered after the first and fourth catalytic runs.



**Figure S21.** Progressive degradation of the structure of [Cu(2-pymo)2] during the oxidative coupling of 2-hydroxyacetophenone and dioxane. TGA (air flux, 10°/min) of the material recovered after the first catalytic run (compare with Fig. S1).



**Figure S22.** Progressive degradation of the structure of [Cu(2-pymo)2] during the oxidative coupling of 2-hydroxyacetophenone and dioxane. FTIR of fresh  $[Cu(2-pymo)_2]$  and the material recovered after the first catalytic run. Adsorption of reaction products on the MOF is evidenced by the band at ca. 1700 cm<sup>-1</sup>.

