Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Metallic nanoparticles immobilized in magnetic metal-organic frameworks: preparation and application as highly active, magnetically isolable and reusable catalysts

Hai-juan Zhang a, Sheng-da Qi a, Xiao-ying Niu a, Jing Hu a, Cui-ling Ren a, Hong-li

Chen^a, Xing-guo Chen^{a, b, *}

^a State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;

^b Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China

* Corresponding author

E-mail address: chenxg@lzu.edu.cn

Tel: 86-931-8912763

Fax: 86-931-8912582

Table S1. Elemental and ICP analyses for the samples.

Sample	Found (%)		
Fe ₃ O ₄ @Pt/MIL-100 (Fe) (15 cycles)	C, 9.15; H, 1.27; Fe, 45.49; Pt, 4.26		
Fe ₃ O ₄ @Pt/MIL-100 (Fe) (20 cycles)	C, 10.06; H, 1.39; Fe, 43.99; Pt, 4.29		
Fe ₃ O ₄ @Pt/MIL-100 (Fe) (30 cycles)	C, 14.02; H, 1.76; Fe, 39.22; Pt, 4.07		
Fe ₃ O ₄ @Pt/MIL-100 (Fe) (40 cycles)	C, 15.61; H, 2.01; Fe, 36.38; Pt, 3.93		
Fe ₃ O ₄ @Pt/MIL-100 (Fe) (60 cycles)	C, 19.73; H, 2.41; Fe, 30.02; Pt, 3.67		

Entry	Compound	Structure	Time/min	Conversion (%)	TOF (h ⁻¹)
1	o-Nitrophenol	OH NO ₂	15	93.2	144
2	<i>m</i> -Nitrophenol	OH NO ₂	6	96.8	374
3	<i>p</i> -Nitrophenol	ОН	10	96.2	223
4	2,4-Dinitrophenol	OH NO ₂	44	96.2	51
5	o-Nitroaniline	NO ₂ NH ₂ NO ₂	10.5	95.2	210
6	<i>m</i> -Nitroaniline	NH ₂	9	96.5	249
7	<i>p</i> -Nitroaniline	NH ₂	20.5	96.6	109
8	4-Methyl-3-nitroaniline	NO ₂ NH ₂	16.5	90.1	127
9	4-Methyl-2-nitroaniline	CH ₂ NH ₂ NO ₂	39	96.2	57
10	<i>p</i> -Nitrophenylhydrazine	HN-NH ₂	10.5	93.9	208
		NO			

Table S2. Reduction of various nitrobenzenes using Fe_3O_4 @Au/MIL-100 (Fe)catalyst ^a.

^a Reaction condition: 25 μL of 10 mM nitrobenzene, 25 μL of 1.0 mg/mL catalyst, and 200 μL of 100 mM fresh NaBH₄.

Entry	Compound	Structure	Time/min	Conversion	TOF (h ⁻¹)
1	o-Nitrophenol	OH NO ₂	2	94.6	778
2	<i>m</i> -Nitrophenol	OH NO ₂	1	94.2	1550
3	<i>p</i> -Nitrophenol	OH	1.2	95.2	1343
4	2,4-Dinitrophenol	OH NO ₂	13.5	97.3	119
5	o-Nitroaniline	NO. NH2 NO2	2.5	97.3	641
6	<i>m</i> -Nitroaniline	NH ₂	2	93.4	768
7	<i>p</i> -Nitroaniline	NH ₂	4	97.6	401
8	4-Methyl-3-nitroaniline	NO. NH ₂	6	93.5	256
9	4-Methyl-2-nitroaniline	NH ₂ NH ₂ NO ₂	9	92.6	169
10	<i>p</i> -Nitrophenylhydrazine	HN-NH ₂	6	96.4	264
		Ť			

Table S3. Reduction of various nitrobenzenes using $Fe_3O_4@Pd/MIL-100$ (Fe) catalyst ^a.

 a Reaction condition: 25 μL of 10 mM nitrobenzene, 25 μL of 1.0 mg/mL catalyst, and 200 μL of

fresh

 $\mathrm{m}\mathrm{M}$

NaBH₄.

Figure S1. SEM images of (A) Fe_3O_4 and $Fe_3O_4@MIL-100$ (Fe) core-shell microspheres after (B) 15, (C) 20, (D) 30, (E) 40, and (F) 60 assembly cycles.

Figure S2. Size distribution of (A) Au NPs, (B) Pt NPs and (C) Pd NPs.

Figure S3. EDX spectra of the Fe₃O₄@MIL-100 (Fe) microspheres with 20 assembly cycles after embedded with (A) Au, (B) Pt, (C) Pd NPs. The copper signal originates from Cu grid.

Figure S4. Room-temperature magnetic hysteresis loops of Fe_3O_4 and Fe_3O_4 @MIL-100 (Fe) core-shell microspheres after 15, 20, 30, 40, and 60 assembly cycles.

Figure S5. The gas chromatography-mass spectra of (A) p-nitrophenol and (B) the product of reduction reaction of p-nitrophenol.

Figure S6. The C_t/C_0 (red) and ln (C_t/C_0) (black) *versus* the reaction time for the reduction of *p*-nitrophenol by NaBH₄ in presence of 25 µg catalyst: (A) Fe₃O₄@Au/MIL-100 (Fe), (B) Fe₃O₄@Pt/MIL-100 (Fe), and (C) Fe₃O₄@Pd/MIL-100 (Fe) with 20 assembly cycles. Conditions: *p*-nitrophenol] = 0.083 mM; [NaBH₄] = 6.67 mM, 25 °C.

Figure. C_t/C_0 versus reaction time for the reduction of -nitrophenol with the catalysts: (A) Fe₃O₄@Au/MIL-100 (Fe), (B) Fe₃O₄@Pt/MIL-100 (Fe), and (C) Fe₃O₄@Pd/MIL-100 (Fe) after different assembly cycles.

Figure S8. TEM images of individual (A) Fe_3O_4 and Fe_3O_4 @Pt/MIL-100 (Fe) core-shell nanospheres after (B) 15, (C) 20, (D) 30, (E) 40, and (F) 60 assembly cycles.

Figure S9. The UV-Vis absorption spectra change for the reduction process of (A) *o*-nitrophenol, (B) *m*-nitrophenol, (C) 2,4-dinitrophenol, (D) *o*-nitroaniline, (E) *m*-nitroaniline, (F) *p*-nitroaniline, (G) 4-Methyl-2-nitroaniline, (H) 4-Methyl-3-nitroaniline and (I) *p*-Nitrophenylhydrazine by NaBH₄ in the presence of Fe₃O₄@Pt/MIL-100 (Fe) catalyst.

Figure S10. UV-Vis spectra of 4*p*-nitrophenol reduction with the as-prepared catalysts in different cycles: (A) Fe_3O_4 @Au/MIL-100 (Fe), (B) Fe_3O_4 @Pt/MIL-100 (Fe), and (C) Fe_3O_4 @Pd/MIL-100 (Fe) with 20 assembly cycles. Inset showed the digital image of reaction solution after reaction for different cycles.

Figure S11. Changes of Pt content after each cycle.