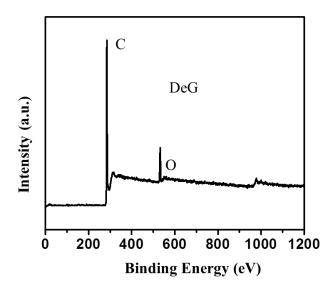
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

Metal-free B-Substituted Graphene with an Enhanced Electrocatalytic Activity for Hydrogen Evolution Reaction

Bhaskar Sathe, a,b Xiaoxin Zou, a,b and Tewodros Asefa a,b,c,*

^a Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA


^b Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, USA

^c Institute for Advanced Materials, Devices and Nanotechnology, Rutgers, The State University of New Jersey, 607 Taylor Road, Piscataway New Jersey 08854, USA.

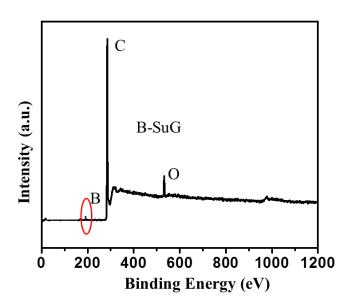

* Corresponding Author: Tel.: (+1) 848-445-2970; Fax: (+1) 848-445-5312; E-mail: tasefa@rci.rutgers.edu

Figure S1. Typical low magnification TEM images of (a) DeG (the precursor material) and (b) B-SuG synthesized by doping DeG with B using BH₃-THF as a borylating agent.

Figure S2. Full survey XPS spectrum of DeG. The compositions of C and O in the material in atomic percentage were found to be of 88.96 % and 5.45 %, respectively.

Figure S3. Full survey XPS spectrum of B-SuG. The compositions of C, O and B in the material in atomic percentages were found to be 88.96 %, 5.45 %, and 1.85 %, respectively.