Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Tetrazole Amides as Hydrogen-Bonding Donor Catalysts in the Chemoselective Oxidation of Sulphides and Disulphides

Francesco Secci^{*}, Massimiliano Arca, Angelo Frongia, Pier Paolo Piras^{*}

Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu,

I-09042, Monserrato, Cagliari, Italy. Phone number (+39) 070 675 4384, e-mail fsecci@unica.it

1. Synthesis
1.1 General methods
1.2 Synthesis of sulphides 5g, 5i, 5l, 5n, 5s4
Synthesis of sulphide 5g4
Synthesis of sulphide 5i4
Synthesis of sulphide 5I4
Synthesis of sulphide 5n5
Synthesis of sulphide 5s5
1.3 Synthesis of sulfoxides 6a-6t6
Sulfoxide 6b6
Sulfoxide 6c6
Sulfoxide 6d6
Sulfoxide 6e7
Sulfoxide 6f7
Sulfoxide 6g7
Sulfoxide 6h7
Sulfoxide 6i
Sulfoxide 6j
Sulfoxide 6k
Sulfoxide 6l
Sulfoxide 6m
Sulfoxide 6n
Sulfoxide 6o9

	Sulfoxide 6p	9
	Sulfoxide 6s	9
	Sulfoxide 6t	9
2.	Spectroscopic NMR data	10
	2.1 ¹ H and ¹³ C NMR spectra data of compound 5g, 5i, 5l, 5n, 5s	10
	2.2 ¹ H and ¹³ C NMR spectra data of compound 6a–6p, 6s, 6t	15
	2.3 ¹ H NMR spectra and titration of compound 2a with TBHP	31
3.	DFT-Optimized metric parameters	39
	3.2 Energy Surface Investigation for 2a	42
4.	Catalyst recovery and scaling-up experiments	43
	4.1 Scaling-up reactions	43
	4.2 Catalyst recovery procedures	43
5.	References	45

1. Synthesis

1.1 General methods

¹H NMR spectra were recorded on 400 and 500 MHz Varian spectrometers at 27°C using CDCl₃, DMF- d_7 or DMSO- d_6 as solvent. ¹³C NMR were recorded at 100 and 125 MHz at 27°C using CDCl₃, DMF- d_7 or DMSO- d_6 as solvent. Chemical shifts (δ) are given in ppm. Coupling constants (J) are reported in Hz. Infrared spectra were recorded on a FT-IR Bruker spectrophotometer and are reported in wavenumbers. Low Mass spectra analysis were recorded on an Agilent-HP GC-MS (E.I. 70eV).

Analytical thin layer chromatography was performed using 0.25 mm silica gel 60-F plates. Flash chromatography was performed using 70-200 mesh silica gel. Yields refer to chromatography and spectroscopically pure materials. Analytical standards of tetrazoles **2a**, **2d**, **2e** were purchased from Sigma Aldrich and used to value the purity of the corresponding synthetized tetrazoles. Sulphides **5a-f**, **5h**, **5j**, **5k**, **5m**, **5o**, **5p**, **5q**, **5r** were purchased from Sigma Aldrich. Sulphides **5g**, **5i**, **5l**, **5n**, **5s**, were synthetized as described below.

1.2 Synthesis of sulphides 5g, 5i, 5l, 5n, 5s

Synthesis of sulphide 5g.

To a stirring suspension of NaH (1.45g, ~60%, 0.036 mol) in dry THF, (50 mL), cooled at 0°C, thiophenol (4g, 0.036) was slowly added in (15 mL of THF). After 1h, 2-(chloromethyl)oxirane (3.32g, 0.036 mol) was added dropwise in 15 mL of dry THF and the reaction was stirred at the same temperature for 6h. The resulting reaction mixture was warmed up to room temperature and filtered. The organic phase was washed with NaHCO₃ and brine. Once dried on Na₂SO₄, the solution was concentrated under reduced pressure to afford a yellow oil. Pure sulphide **5g** was obtained by flash column chromatography (silica gel, 80:20 hexane/ether) in 71% yield (4.2 g). ¹H NMR (400 MHz, CDCl₃) δ : 7.40 (d, 2 H, *J* = 7.6 Hz), 7.27 (t, 2 H, *J* = 7.6 Hz), 7.19 (t, 1 H, *J* = 7.6 Hz), 3.14-3.10 (m, 2H), 2.91 (dd, 1H, *J* = 7.2 Hz, *J* = 15.2 Hz), 2.73 (t, 1H, *J* = 3.6 Hz), 2.48 (t, 1H, *J* = Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 135.1, 130.0, 128.8, 126.5, 50.8, 47.1, 36.4. Spectroscopic data are in accordance with those previously reported.¹

Synthesis of sulphide 5i.

Sodium (0) (1.45g, 0.063 mol) was added (small chunks) in 100 ml of dry MeOH stirred at 0°C under Argon. The mixture was stirred until all the metal disappeared. Thiophenol (7g, 0.063 mol), (dissolved in 20 mL of dry MeOH) was added dropwise and the reaction mixture was stirred at 0°C for 1h. 1,3-dibromopropane (6.2g, 0.031 mol) was added dropwise (in 20 mL of MeOH). The cooling bath was removed and the reaction was stirred overnight at 50°C. The reaction mixture was diluted with Et₂O (100 mL) and filtered. The resulting clear solution was washed with NaOH 2M (50 mL) and brine. The organic layer was dried on Na₂SO₄ and filtered. The clear organic phase was concentrated under reduced pressure and the obtained oil was distilled at low pressure. Pure 1,3-bisdiphenylthiopropane **7i** was afforded as colourless oil in 85% yield (6.8g). ¹H NMR (400 MHz, CDCl₃) δ : 7.39-7.33 (m, 4H), 7.28 (t, 4H, *J* = 7.2 Hz), 7.19 (t, 2H. *J* = 7.2 Hz), 3.06 (t, 4H, *J* = 7.2 Hz), 1.98 (t, 2H, *J* = 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 136.0, 129.3, 128.9, 126.0, 32.4, 28.3 ppm. Spectroscopic data are in accordance with those previously reported.²

Synthesis of sulphide 5l.

To a solution of α -bromoacetophenone (5g, 0.025g), in dry THF (70 mL), Na₂S was added and the suspension was stirred at reflux overnight. The reaction mixture was cooled to room temperature and filtered. The solid was diluted

with CH₂Cl₂ (100 mL) and washed with brine. The organic phase was dried with Na2SO4 and concentrated under reduced pressure to afford a yellow solid that was recrystallized by MeOH/hexane to afford sulphide **5I** in 60% yield (4.0g). ¹H NMR (400 MHz, CDCl₃) δ : 7.96 (d, 4 H, *J* = 7.5 Hz), 7.57 (t, 2 H, *J* = 7.5 Hz), 7.46 (t, 4 H, *J* = 7.5 Hz), 3.98 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 194.1, 135.4, 133.5, 128.7, 128.6, 37.6 ppm. Spectroscopic data are in accordance with those previously reported.³

Synthesis of sulphide 5n.

S COOEt

To a stirring solution of phenylmethanethiol (4g, 0.032 mol) in THF, (60 mL), K₂CO₃ (8.83g, 0.064 mol) was added. After 30 min. ethyl 2-Chloro-2-methylpropanoate (7.2g, 0.048 mol) was added dropwise in 20 mL of dry THF and the reaction was warmed up to reflux for 14h. The resulting reaction mixture was cooled to room temperature and filtered. The organic phase was washed with brine. Once dried on Na₂SO₄, the solution was concentrated under reduced pressure to afford a yellow oil. Pure sulphide **5n** was obtained by flash column chromatography (silica gel, 80:20 hexane/ether) in 58% yield (4.4 g). ¹H NMR (500 MHz, CDCl₃) δ : 7.30-7.29 (m, 5 H), 4.21-4.08 (m, 2 H), 3.86 (dd, 1 H, *J* = 1.2 Hz, *J* = 12.8 Hz), 3.67 (dd, 1H, *J* = 1.2 Hz, *J* = 12.8 Hz), 1.55 (d, 3H, *J* = 1.6 Hz), 1.53 (d, 3H, *J* = 1.6 Hz), 1.26 (dt, 3H, *J* = 1.6, 6.8 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 171.1, 131.0, 130.3, 129.9, 128.7, 128.1, 61.7, 55.1, 21.5, 15.7, 14.0 ppm. Spectroscopic data are in accordance with those previously reported.⁴

Synthesis of sulphide 5s.

To a stirring solution of 2-Methyl-benzenethiol (5g, 0.040 mol) in MeOH, (50 mL), air was doubled for 4 days at room temperature. The resulting reaction mixture was concentrated under reduced pressure. Pure sulphide **5s** was obtained by flash column chromatography (silica gel, 95:5-90:10 hexane/ether) in 42% yield (2.08 g). FTIR (KBr) cm⁻¹ v: 3007, 2989, 2884, 1102, 1023. ¹H NMR (500 MHz, CDCl₃) δ : 7.50 (t, 2 H, J = 6.0 Hz), 7.14-7.10 (m, 6 H), 2.41 (s, 6 H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 137.4, 135.4, 130.4, 128.7, 127.3, 126.6, 19.9 ppm. Ms *e/z*:(M⁺246, (68%), 211 (10%), 123 (100%), 77 (33%), 45 (80%).

1.3 Synthesis of sulfoxides 6a-6t.

General procedure for the synthesis of sulfoxides 6a-6t

To a 0.3 M solution of sulphide **5a** and tetrazole **2a** (5 mol. %) in CH_2Cl_2 (3.0 mL), *t*BuOOH (5.5 M in decane 1.1 eq.) was added in one injection and the resulting mixture was stirred at room temperature and followed by Gc-Ms until completion (6/7 ratio >99: <1). The reaction mixture was filtered and the filtrate was washed two times with 5 mL of CH_2Cl_2 . The organic phase was concentrated under reduced pressure. Pure sulfoxide **6a** was obtained by flash column chromatography (silica gel, 90:10 hexane/ether) in 92% yield.

Sulfoxide 6a Colourless oil. ¹H NMR (500 MHz, CDCl₃) δ: 7.62-7.60 (m, 2 H), 7.48-7.46 (m, 3 H), 2.68 (s, 3 H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ: 145.6, 130.8, 129.2, 123.3, 43.8 ppm. Ms *e/z*:(M⁺140, (100%), 125 (98%), 97 (60%), 77 (50%), 51 (35%). Spectroscopic data are in accordance with those previously reported.⁵

Sulfoxide 6b. Colourless oil. ¹H NMR (500 MHz, CDCl₃) δ: 7.36 (d, 2 H, *J* = 8.5 Hz), 7.14 (d, 2 H *J* = 8.5 Hz), 2.51 (s, 3 H), 2.22 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ: 142.1, 140.0, 129.4, 122.9, 43.4, 20.8 ppm. Ms *e/z*: (M⁺154, (64%), 139 (100%), 111 (8%), 91 (30%), 30 (24%), 63 (15%). Spectroscopic data are in accordance with those previously reported.⁶

HO Sulfoxide 6c. White solid. FTIR (KBr) cm⁻¹ v: 3415, 3060, 2905, 2331, 1574, 1555, 1471, 1444, 1306, 1021, 790. ¹H NMR (500 MHz, CDCl₃) δ: 7.50 (d, 2 H, J = 8.5 Hz),7.97 (d, 2 H, J = 8.5 Hz), 2.75 (s, 3 H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ: 160.6, 133.1, 126.0, 116.8, 42.9 ppm. Ms e/z:(M⁺156, (31%), 141 (100%), 125 (10%), 109 (10%), 85 (9%), 65 (11%). Spectroscopic data are in accordance with those previously reported.⁶

Sulfoxide 6d. Colourless oil. FTIR (KBr) cm⁻¹ v: 3056, 3007, 2872, 1478, 1045, 1022, 790, 750. ¹H NMR (500 MHz, CDCl₃) δ : 7.64 (t, 2 H, *J* = 7.5 Hz), 7.50-7.46 (m, 3 H), 2.23 (ddd, 1 H, *J* = 5 Hz, *J* = 8 Hz, 13 Hz), 1.20 (dt, 1H, *J* = 5 Hz, *J* = 15 Hz), 1.03-0.99 (m, 1H), 0.98-0.93 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 144.7, 130.6, 128.9, 123.7, 33.5, 3.1, 2.4 ppm. Ms *e/z*:(M⁺166, (10%), 150 (22%), 135 (28%), 125 (100%), 117 (53%), 109 (35%), 77 (41%), 65 (33%), 62 (65%). Spectroscopic data are in accordance with those previously reported.⁷

 Sulfoxide
 6e.
 White
 solid.
 FTIR
 (KBr)
 cm⁻¹

 v: 3057, 2943, 2892, 2830, 1444, 1189, 1110, 1040, 752.
 ¹H
 NMR
 (400
 MHz, CDCl₃)
 δ:
 7.65-7.62

 (m, 2 H), 7.54-7.51 (m, 3 H), 4.39 (AB q, 2H, J = 10 Hz), 3.65 (s, 3 H) ppm; ¹³C NMR (100 MHz, CDCl₃)
 δ:
 140.6, 131.0, 128.9, 124.0, 93.9, 60.57 ppm. Ms *e/z*:(M⁺) 170, (18%), 155 (30%), 138 (61%), 125 (100%), 109 (43%), 77 (47%), 65 (39%), 62 (65%).
 Spectroscopic data are in accordance with those previously reported.⁸

Sulfoxide 6f. Colourless oil. ¹H NMR (500 MHz, CDCl₃) δ : 7.59-7.57 (m, 2 H), 7.51-7.47 (m, 3 H), 5.63 (ddt, 1 H, *J* = 7.5 Hz, *J* = 10 Hz, 17.5 Hz), 5.30 (d, 1H, *J* = 10 Hz), 5.17 (dd, 1H, *J* = 1 Hz, *J* = 17.5 Hz), 3.55 (dd, 1H, *J* = 7.5 Hz, *J* = 13 Hz), 3.48 (dd, 1H, *J* = 7.5 Hz, 13 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 142.9, 131.0, 128.9, 125.2, 124.2123.7, 60.8 ppm. Ms *e/z*: (M⁺) 166, (50%), 149 (10%), 125 (100%), 118 (41%), 97 (40%), 77 (45%), 77 (41%), 41 (58%). Spectroscopic data are in accordance with those previously reported .⁹

Sulfoxide 6g. Colourless oil (1:1 mixture of diastereoisomers). FTIR (KBr) cm⁻¹ v: 3057, 2999, 2908, 2335, 1477, 1444, 1088, 1037, 848, 749. ¹H NMR *syn* (500 MHz, CDCl₃) δ: 7.64-7.60 (m, 2 H),7.50-7.47 (m, 3 H), 2.93 (dd, 1 H, *J* = 5 Hz, *J* = 15 Hz), 2.81 (t, 1H. *J* = 4.5 Hz), 2.78 (t, 1H, *J* = 5 Hz), 2.63 (dd, 1H, *J* = 2 Hz, *J* = 5 Hz), 2.50 (dd, 1H, *J* = 2.5 Hz, *J* = 4.5 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ: 142.6, 131.2, 129.2, 123.7, 58.7, 46.2, 45.3 ppm. Ms *e/z*:(M⁺182, (10%), 164 (61%), 166 (18%), 125 (100%), 109 (50%), 77 (46%), 57 (21%).

¹H NMR *anti* (500 MHz, CDCl₃) δ : 7.64-7.60 (m, 2 H),7.50-7.47 (m, 3 H), 3.32 (ddt, 1 H, *J* = 2.5 Hz, *J* = 4 Hz, *J* = 7 Hz), 3.07-3.02 (m, 2H), 2.86 (dd, 1H, *J* = 7 Hz, *J* = 13.5 Hz), 2.96 (dd, 1H, *J* = 7 Hz, *J* = 18.5 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 143.4, 131.2, 129.2, 123.9, 60.8, 46.9, 46.0 ppm. Ms *e/z*:(M⁺182, (12%), 164 (58%), 165 (24%), 125 (100%), 109 (57%), 77 (40%), 57 (27%). Spectroscopic data are in accordance with those previously reported.¹⁰

Sulfoxide 6h. White solid. FTIR (KBr) cm⁻¹ v: 3057, 1475, 1091, 1048, 910. ¹H NMR (500 MHz, CDCl₃) δ: 7.64 (dd, 4H, *J* = 1.5 Hz, *J* = 8 Hz), 7.44-7.40 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ: 145.4, 130.8, 129.1, 124.5 ppm. Ms *e/z*: (M⁺202, (100%), 185 (21%), 173 (32%), 154 (70%), 125 (13%), 109 (60%), 77 (35%), 51 (33%).

Sulfoxide 6i. Colourless oil. FTIR (KBr) cm⁻¹ v: 3056, 2938, 2866, 1582, 1479, 1441, 1303, 1255, 1086, 1044, 997. ¹H NMR (500 MHz, CDCl₃) δ: 7.49 (d, 1H, *J* = 2.5 Hz); 7.47 (d, 1H, *J* = 2.0 Hz), 7.42-7.38 (m, 3H), 7.20-7.17 (m, 2H), 7.16-7.15 (m, 2H), 7.10-7.07 (m, 1H), 2.93-2.87 (m, 1H), 2.91 (t, 2H, *J* = 7 Hz), 2.77 (ddd, 1H, *J* = 5 Hz, *J* = 9 Hz, *J* = 18.5Hz), 2.01 8m, 1H), 1.82 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ: 143.4, 135.1, 130.8, 129.8, 129.1, 128.8, 126.3, 123.8, 55.2, 32.8, 21.5 ppm. Ms *e/z*: (M⁺) 276 (38%), 170 (60%), 167 (51%), 109 (100%), 77 (70%). Spectroscopic data are in accordance with those previously reported.⁵

Sulfoxide 6j. Colourless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.35–7.23 (m, 5H), 4.00 (d, 1H, *J* = 12.8 Hz), 3.88 (d, 1H, *J* = 12.8 Hz), 2.41 (s, 3 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 130.1, 129.7, 128.9, 128.5, 60.3, 37.3 ppm. Ms *e/z*:(M⁺154, (6%), 138 (6%), 121 (8%), 91 (100%), 65 (23%), 51 (15%). Spectroscopic data are in accordance with those previously reported.¹¹

Sulfoxide 6k. Colourless oil. ¹H NMR (400 MHz, CDCl₃) δ: 2.93-2.84 (m, 4H), 2.61-2.40 (m, 2H), 2.23-2.02 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ: 53.7, 24.6 ppm. Ms *e/z*:(M⁺104, (100%), 88 (22%), 76 (57%), 62 (41%).

Sulfoxide 6l. White solid. ¹H NMR (500 MHz, CDCl₃) δ : 7.97 (t, 4H, *J* = 8 Hz), 7.62 (t, 2H, *J* = 7.5 Hz), 7.5 (m, 4H), 4.76 (d, 2H, *J* = 15 Hz), 4.43 (d, 2H, *J* = 15 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 192.3, 136.1, 134.3, 128.8, 59.3 ppm. Ms *e/z*: (M⁺) 286 (51%), 181 (64%), 119 (43%), 105 (100%), 77 (65%). Spectroscopic data are in accordance with those previously reported.¹²

COOEt

Sulfoxide 6n. Yellow oil. FTIR (KBr) cm⁻¹ v: 3031, 2981, 2936, 1732, 1556, 1446, 1271, 1050, 1039. ¹H NMR (400 MHz, CDCl₃) δ: 7.34-7.30 (m, 5H), 4.17 (ddq, 2H, *J* = 3.6 Hz, *J* = 7.2 Hz, *J* = 22.4 Hz), 3.80 (ABq, 2H, *J* = 12.8 Hz), 1.58 (s, 3H), 1.56 (s, 3H), 1.29 (t, 3H, *J* = 7.2 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 171.1, 131.0, 129.9, 128.7, 128.1, 62.6, 61.7, 55.1, 21.5, 15.7, 14.0 ppm. Ms *e/z*: (M⁺) 254 (23%), 239 (10%), 225 (68%), 209 (43%), 181 (84%), 162 (52%), 123

(30%), 91 (100%), 77 (48%). Anal. Calcd for C₁₃H₁₈O₃S: C, 61.39; H, 7.13; S, 12.61. Found: C, 61.14; H, 7.11; S, 12.57.

Sulfoxide 60. White solid. FTIR (KBr) cm⁻¹ v: 2954, 2901, 2837, 2216, 1642, 1427, 1275, 1017, 919. ¹H NMR (500 MHz, CDCl₃) δ : 3.98 (dd, 1H, J = 1.5 Hz, J = 12.5 Hz), 3.63 (d, 1H, J = 12.5 Hz), 3.30 (ddd, 1H, J = 3 Hz, J = 6 Hz, 13 Hz), 2.60 (ddt, 2H, J = 2.5 Hz, J = 18.5 Hz, J = 25.5 Hz), 2.54-2.46 (m, 2H), 2.21-2.13 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ : 52.9, 50.4, 28.2, 27.0 ppm. Ms *e/z*:(M⁺136, (100%), 119 (12%), 106 (51%), 90 (64%), 73 (43%), 60 (37%), 45 (96%), 41 (80%). Spectroscopic data are in accordance with those previously reported.¹⁴

Sulfoxide 6p. Colourless liquid. FTIR (KBr) cm⁻¹ v: 3055, 2974, 2934, 2387, 1581, 1548, 1479, 1178, 1084, 1046, 743. ¹H NMR (400 MHz, CDCl₃) δ : 7.70-7.68 (m, 2H), 7.49-7.48 (m, 3H), 7.44-7.43 (m, 2H), 7.30-7.25 (m, 3H), 4.13 (ABq, 2H, *J* = 13.6 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 142.6, 133.4, 131.5, 130.8, 129.1, 129.0, 127.6, 124.7, 60.8 ppm. Ms *e/z*: (M⁺) 246 (70%), 155 (38%), 137 (32%), 124 (100%), 109 (90%), 77 (53%). Spectroscopic data are in accordance with those previously reported.¹⁴

Sulfoxide 6s. deliquescent yellow solid. FTIR (KBr) cm⁻¹ v: 3008, 2975, 2865, 1459, 1184, 1069, 911. ¹H NMR (500 MHz, CDCl₃) δ : 7.74 (dd, 1H, *J* = 1.5 Hz, *J* = 8 Hz), 7.56 (dd, 1H, *J* = 1.0 Hz, *J* = 8.0 Hz), 7.38 (dd, 1H, 1.5 Hz, *J* = 7.5 Hz), 7.34 (d, 1H, *J* = 1.0 Hz), 7.33-7.32 (m, 1H), 7.32-7.31 (m, 1H), 7.30-7.20 (m, 2H), 2.51 (s, 3H), 2.37 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 143.0, 138.3, 137.0, 134.1, 132.8, 131.4, 130.6, 130.2, 128.7, 126.7, 125.8, 124.2, 21.1, 18.2 ppm. Ms *e/z*:(M⁺) 262, (18%), 139 (100%), 123 (31%), 91 (40%), 65 (13%). Anal. Calcd for C₁₄H₁₄OS₂ : C, 64.08; H, 5.38; S, 24.44. Found: C, 63.99; H, 5.37; S, 24.46.

O OH S NO₂

 $\begin{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} & \begin{array}{l} & \end{array}{l} & \begin{array}{l} & \end{array}{l} \\ les{ll} & \end{array}{l} \\ \\$ law{les} \\l \\

2. Spectroscopic NMR data 2.1 ¹H and ¹³C NMR spectra data of compound 5g, 5i, 5l, 5n, 5s

2.2 ¹H and ¹³C NMR spectra data of compound 6a–6p, 6s, 6t

3. DFT-Optimized metric parameters

Table 3.1 DFT-optimized geometry for TBHP in orthogonal Cartesian coordinate format.

Center	Atomic	Coordinates (Angstroms)			
Number	Number	Х	Y	Z	
1	6	0.054168	0.000000	-0.026033	
2	8	-0.008903	0.00000	1.398482	
3	8	1.334236	0.00000	1.902590	
4	1	1.135446	0.00000	2.846543	
5	6	-1.420626	0.00000	-0.412339	
6	6	0.752808	1.262920	-0.523533	
7	6	0.752808	-1.262920	-0.523533	
8	1	-1.523810	0.00000	-1.505824	
9	1	-1.924593	-0.891056	-0.013706	
10	1	-1.924593	0.891056	-0.013706	
11	1	0.750337	-1.299216	-1.621937	
12	1	1.793200	-1.291593	-0.176548	
13	1	0.238350	-2.156719	-0.143653	
14	1	0.750337	1.299216	-1.621937	
15	1	0.238350	2.156719	-0.143653	
16	1	1.793200	1.291593	-0.176548	

Table 3.2. DFT-optimized geometry for 2a in orthogonal Cartesian coordinate format.

Center	enter Atomic Coordinates (Angstroms				
Number	Number	Х	Y	Z	
1	 7	0.039523	0.147031	-0.003513	
2	6	0.030625	0.166088	1.321863	
3	7	1.244213	0.036604	1.859853	
4	7	2.042801	-0.070705	0.801622	
5	7	1.334787	-0.006860	-0.295386	
6	7	-1.058616	0.326153	2.187958	
7	6	-2.391990	0.333819	1.952867	
8	8	-2.934459	0.170419	0.875642	
9	6	-3.233856	0.555760	3.194339	
10	6	-4.574778	0.162004	3.122180	
11	6	-5.427555	0.332933	4.207874	
12	6	-4.956266	0.919659	5.383319	
13	6	-3.628586	1.337310	5.458792	
14	6	-2.773988	1.157688	4.371816	
15	1	-6.468961	0.010796	4.137935	
16	1	-4.916429	-0.273433	2.181916	
17	1	-1.745695	1.518792	4.440666	
18	1	-3.255034	1.814693	6.367241	
19	1	-5.624665	1.059121	6.235748	
20	1	-0.750466	0.344560	3.150527	

Table 3.3. DFT-optimized geometry for the complex 2a-TBHP in orthogonal Cartesian coordinate format.

Coordinates (Angstroms)	Co	er Atomic	Center
X Y Z	X	er Number	Number
86930 0.028138 -0.079202	0.086930	1 6	1
07469 0.035760 1.318983	0.007469	2 6	2
74135 -0.138913 2.071344	1.174135	3 6	3
94977 -0.347329 1.438938	2.394977	4 6	4
66338 -0.366135 0.045694	2.466338	5 6	5
12664 -0.171143 -0.711691	1.312664	6 6	6
64138 0.263554 2.085655	-1.264138	7 6	7
67085 0.626830 3.234351	-1.267085	8 8	8
17006 -0.007074 1.362892	-2.417006	9 7	9
09982 0.159815 1.798926	-3.709982	.0 6	10
41110 -0.447205 1.179122	-4.741110	.1 7	11
71761 -0.070047 1.786123	-5.871761	.2 7	12
25743 0.717810 2.731766	-5.525743	.3 7	13
93328 0.892808 2.776438	-4.193328	.4 7	14
98065 -0.490646 2.034548	3.298065	.5 1	15
94272 -0.102679 3.158533	1.094272	6 1	16
0.0510 0.209738 -0.689040	-0.800510	7 1	17
68827 -0.161315 -1.801659	1.368827	8 1	18
25400 -0.523062 -0.451201	3 425400	9 1	19
25730 -0.486304 0.471143	-2 325730	20 1	20
32551 -1 082148 0 375455	-4 732551	20 I 21 I	20
17037 -1553607 -1258808	-2 847037		22
1.007 1.00007 1.20000	_/ 195118	.2 0	22
-1.995244 -1.100271	-2.267271		20
11000 1720602 240257	-2.307371		24
-2.40376	-4.911002		20
	-6.306705	50 0 N7 (20
	-4.908976	6	27
/9904 -2.53/856 -3.528192	-4.2/9904	6	28
68539 -2.106457 -2.92623	-6.968539	29 1	29
83328 -3.303173 -1.798240	-6.283328	30 1	30
35601 -1.67/686 -1.216549	-6.735601	1	31
96562 -0.030775 -3.602075	-5.496562	32 1	32
53656 0.327118 -1.866153	-5.353656	33 1	33
87602 0.128462 -2.863709	-3.887602	34 1	34
57748 -2.415321 -4.454033	-4.857748	35 1	35
54656 -2.198873 -3.728922	-3.254656	36 1	36
61764 -3.607872 -3.276616	-4.261764	37 1	37

3.2 Energy Surface Investigation for 2a

Figure S1. Potential energy surface obtained on varying the torsion angle θ of the tetrazole ring with respect to the benzene plane (dihedral N2–C1–N1–C2 in Figure 5).

4 Catalyst recovery and scaling-up experiments

4.1 Scaling-up

Oxidation of sulphide 5a

To a solution of sulphide **5a** (10 g, 0.080 mol) and tetrazole **2a** (750 mg, 0.0040 mol) in CH_2Cl_2 (250 mL), *t*BuOOH (16 mL, 5.5 M in decane 1.1 eq.) was added dropwise over 10 min. The resulting mixture was stirred at room temperature and followed by Gc-Ms until completion. after 50h, the reaction mixture was filtered and the white solid was washed with CH_2Cl_2 3X70 mL. The organic phase was concentrated under reduced pressure and the resulting yellow oil was purified by flash chromatography (silica gel, 80:20 hexane/ether). 92 % yield. Conversion >99%, ratio **6a/7a** = 99:1.

Oxidation of sulphide 5m

To a solution of sulphide **5m** (10 g, 0.086 mol) and tetrazole **2a** (814 mg, 0.0043 mol) in CH_2CI_2 (250 mL), *t*BuOOH (16 mL, 5.5 M in decane 1.1 eq.) was added dropwise over 10 min. The resulting mixture was stirred at room temperature and followed by Gc-Ms until completion. after 90h, the reaction mixture was filtered and the white solid was washed with CH_2CI_2 3X70 mL. The organic phase was concentrated under reduced pressure and the resulting yellow oil was purified by flash chromatography (silica gel, 80:20 hexane/ether). 90 % yield. Conversion >95%, ratio **6a/7a** = 99:1.

4.3 Catalyst recovery. Oxidation of sulphide 5a

To value the catalyst recovery, we carried out a set of experiments as reported in table 4.1.

150 mg of cat. 2a were loaded for the oxidation of 2 g of sulphide 5a. At completion, the reaction mixture was filtered and washed with CH₂Cl₂ (2 x 20 mL). Cat. 2a was collected and dried under reduced pressure for 12h at room temperature. The catalyst recovery % was determined by weighting of the dried white solid. (126 mg of catalyst, 84% recovered).

- 120 mg of cat. 2a were loaded for the oxidation of 1.60 g of sulphide 5a. After filtration and drying, the catalyst recovery % was determined by weighting of the dried white solid. (100 mg of catalyst, 83% recovered).
- 3) 100 mg of cat. **2a** were loaded for the oxidation of 1.33 g of sulphide **5a**. After filtration and drying, the catalyst recovery % was determined by weighting of the dried white solid. (86 mg of catalyst, 84% recovered).
- 4) 82.5 mg of cat. 2a were loaded for the oxidation of 1.10 g of sulphide 5a. After filtration and drying, the catalyst recovery % was determined by weighting of the dried white solid. (60 mg of catalyst, 80% recovered).
- 5) 60 mg of cat. **2a** were loaded for the oxidation of 0.80 g of sulphide **5a**. After filtration and drying, the catalyst recovery % was determined by weighting of the dried white solid. (43 mg of catalyst, 72% recovered).
- 37.5 mg of cat. 2a were loaded for the oxidation of 0.50 g of sulphide 5a. After filtration and drying, the catalyst recovery % was determined by weighting of the dried white solid. (21 mg of catalyst, 56% recovered).

Table 4.1. Catalyst recovery.

Reaction	Reaction	cat. 2a 5 mol	cat. 2a recovery	5a yield %	Time/h	6a/7a ratio
number	scale/g	% (mg)	g/(%)			
1	2.0 g	150.0 mg	126 mg (84%)	90 %	60h	99:1
2	1.60 g	120.0 mg	100 mg (83%)	87 %	60h	99:1
3	1.33 g	100.0 mg	84 mg (84%)	88 %	74h	99:1
4	1.10 g	82.5 mg	75 mg (90%)	86 %	70h	99:1
5	1.00 g	75.0 mg	60 mg (80%)	89 %	80h	98:2
6	0.80 g	60.0 mg	43 mg (72%)	78 %	80h	98:2
7	0.50 g	37.5 mg	21 mg (56%)	85%	70h	99:1

TBHP (1.1 equiv. in decane), **2a** 5 mol %, in CH_2Cl_2 (3 M), r.t. a) Yields calculated after flash chromatography. The reaction were followed by GC-Ms until completion.

5. References

- 1) L. Changqing; K. Kazuaki; H. Yukihiko; S. Kazuhiko. J. Org. Chem. 1996, 61, 494-502
- 2) D. N. Hall; A. A. Oswald; K. Griesbaum. J. Org. Chem., 1965, 30, 3829-3834
- Q. Su; Z.-J. Zhao; F. Xu; P.-C. Lou; K. Zhang; D.-X. Xie; L. Shi; Q.-Y. Cai; Z.-H. Peng; D.-L. Eur. J. Org. Chem. 2013, 8, 1551-1557
- 4) U. Luhmann; F. G. Wentz; W. Lüttke; P. Süsse. Chem. Berichte, 1977, 110, 1421 1431
- 5) E. A. Mercier; C. D. Smith; M. Parvez; T. G. Back. J. Org. Chem. 2012, 77, 3508-3517
- 6) V. Mojr; V. Herzig; M. Budesinsky; R. Cibulka; T. Kraus. Chem. Commun. 2010, 46, 7599-7601
- 7) G. de Gonzalo; D. E. Torres Pazmiño; G. Ottolina; M. W. Fraaije; G. Carrera. *Tetrahedron: Asymm.* **2006**, *17*, 130-135
- 8) Q. Zeng; Y. Gao; J. Dong; W. Weng; Y. Zhao. Tetrahedron: Asymm. 2011, 22, 717-721
- 9) a) D. Ramkumar; S. Sankararaman. Synthesis, 1993, 11, 1057-1058, b) H. S. D. Soysa; W. P. Weber. Tetrahedron: Lett. 1978, 19, 235-238
- 10) N. Furukawa; S. Ogawa; K. Matsumura; F. Hisashi. J. Org. Chem. 1991, 56, 6341-6348
- 11) T. Jia; A. Bellomo; K. E. Baina; S. D. Dreher; P. J. Walsh. J. Am. Chem. Soc. 2013, 135, 3740-3743
- 12) S. Selvaraj; A. Dhanabalan; S. Renuga; S. Sivasubramanian; N. Arumugam. Ind. J. Chem. Sect. B.
 1991, 30, 1060 -1061
- 13) P. Renaud, Helv. Chim. Acta. 1991, 74, 1305-1313
- 14) J. Fujisaki; K. Matsumoto; K., Matsumoto; T. Katsuki. J. Am. Chem. Soc. 2011, 133, 56-61