Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2014

Supporting Information

for

Asymmetric hydrogenation by RuCl₂(R-Binap)(dmf)_n

encapsulated in silica-based nanoreactors

Juan Peng^{ab}, Xuefeng Wang^a, Xiaoming Zhang^{ab}, Shiyang Bai^a, Yaopeng Zhao^a, Qihua Yang^{*a} and Can Li^{*a}

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023,
China

^b Graduate School of the Chinese Academy of Sciences, Beijing 100049,
 China

Figure S1. ¹H-NMR of $RuCl_2(R-Binap)(dmf)_n$ (n=2) performed under inert atmosphere using degassed $CDCl_3$ as solvent.

¹H-NMR (400 MHz, CDCl₃, 298K, TMS): 8.01 (s, 2H, carbonyl H), 7.36-7.09 (m, 32H, aromatic H), 2.95 (s, 6H, -CH₃), 2.88 (s, 6H, -CH₃).

Figure S2. ¹³C-NMR spectrum of RuCl₂(*R*-Binap)(dmf)_n (n=2) performed under inert atmosphere using degassed CDCl₃ as solvent.

¹³C-NMR (400 MHz, CDCl₃, 298K): 162.78 (s, C=O), 135.06 (s, C-P), 128.63-126.21 (m,

aromatic C), 36.72 (s, CH₃)

Figure S3. UV-vis diffused reflectance spectrum of (a) solid catalyst $RuCl_2(R-Binap)(dmf)_n$ @C-FDU-12 and UV-vis spectrum of (b) $RuCl_2(R-Binap)(dmf)_n$ dissolved in dichloromethane.

Figure S4. The GC spectra of the corresponding products of various β -keto esters