4

6

8

Supporting Information

Synthesis, Acid Properties and Catalysis by Niobium Oxide Nanostructured Materials

M. Luisa Marin, Geniece L. Hallett-Tapley, Stefania Impellizzeri, Chiara Fasciani, Sabrina Simoncelli, Jose Carlos Netto-Ferreira and Juan C. Scaiano

10	
12	Figure S1. TEM images of (a) comm. $Nb_2O_5 \bullet nH_2O$, (b) T-I, (c) T-II, (d) T-IIIa, (e) T-IIIb and (f) T-IV
14	Figure S2. XRD spectra of (a) T-II, (b) T-IIIa, (c) T-IIIb and (d) T-IV
16	Table S1. Pore size and surface area data as determined by nitrogen adsorption isotherms
18	Figure S3. Nitrogen adsorption isotherms of (a) comm. Nb ₂ O ₅ , (b) T-IIIa, (c) T-IIIb and (d) T-IV
20	
22	(A) a TFA control (B) T-II, (C) T-IIIb and (D) T-IV as heterogeneous catalysts. The reactions were monitored as a function of time: (a) 0 h (b) 1 h (c) 3 h (d) 5 h (e) 24 h
24	(f) 3 d, (g) 5 d and (h) from the initial absorption of 1
26	Figure S5. UV-visible spectra monitoring the Brønsted acid ring opening of 7.5 μ M 1 under TFA acidic conditions in 14:1 MeCN/H ₂ O. The reactions were monitored as a
28	function of time: (a) before TFA addition, (b) immediately following TFA addition 0 h, (c) 2 d and (d) 5 d. Note no change in the absorption spectrum as (b), (c) and (d) are all $\frac{1}{2}$
30	overlapping
32	Figure S6. Fluorescence spectra monitoring the Brønsted acid ring opening of 1 to 2 using (A) a TFA control, (B) T-II, (C) T-IIIb and (D) T-IV as heterogeneous catalysts.
34	The reactions were monitored as a function of time: (a) 1 h, (b) 3 h, (c) 4 h, (d) 6 h, (e) 30 h and (f) 4 d.
36	
	Figure S7. ¹ H NMR spectra (CD ₃ CN) and peak attribution of 1 and 2. The spectrum of 2
38	was obtained by adding 10 equivalents of TFA to a solution of 1 in CD_3CN . The spectra have been collapsed into the 9-4 ppm region in order to illustrate the peaks most relevant
40	to the discussion. (full ¹ H NMR enumeration can be found in Ref. 1 of the Supporting Information)
42	
44	Figure S8. ¹ H NMR spectra of 1 in CD ₃ CN (a) immediately, (b) 2 h (c) 24 h and (d) 48 h following the addition of T-IIIa. S10

46	Figure S9. (a) Diffuse reflectance and (b) solid state fluorescence spectra of product 2 adsorbed onto $Nb_2O_5 \bullet nH_2O$ T-IIIa
48	Figure S10. ¹ H NMR spectra of 1 in CD ₃ CN (a) immediately, (b) 2 h and (c) 96 h after the addition of Nb ₂ O ₅ • n H ₂ O T-I
50	
	Figure S11. UV-visible spectra monitoring the reusability of catalyst T-I in the Brønsted
52	acid ring opening of 150 µM 1 (40 mg of T-I in 10 mL of MeCN) following 1 day of reaction: (a) Trial 1 and (b) Trial 2
54	
	Figure S12. Schematic representation of the experimental set up for single-molecule
56	fluorescence observation under TIRF illumination ($\lambda_{ex} = 633$ nm, 40 W/cm ²) for the
	Brønsted acid-catalyzed isomerization of 1 (non-fluorescent) to product 2 (fluorescent)
58	over a single Nb ₂ O ₅ • n H ₂ O T-I particle
60	Figure S13. Protonation activity as shown by the conversion of 1 to 2 and detection of
	the fluorescence from 2. Surface maps A and B depict the accumulated signals for the
62	first 25 seconds and the subsequent 25 seconds of reaction, respectively. Map C presents
	the differences of A minus B expanded by an approximate factor of 3. Panel D shows an
64	alternative view of panel C, illustrating both positive and negative peaks (see colour coded scale). Note that this figure is related to the one represented in Figure 7 in the
66	manuscript
	1

72

Figure S1. TEM images of (a) comm. Nb₂O₅•nH₂O, (b) T-I, (c) T-II, (d) T-IIIa, (e) T-IIIb and (f) T-IV.

Figure S2. XRD spectra of (a) T-II, (b) T-IIIa, (c) T-IIIb and (d) T-IV.

80

Table S2. Pore size and surface area data as determined by nitrogen adsorption isotherms.

Sample	BET Surface Area (m ² /g)	Pore Size (Å)
T-IIIa	528	24.4
T-IIIb	295	9.6
T-IV	409	19.6

Figure S3. Nitrogen adsorption isotherms of (a) comm. Nb₂O₅, (b) T-IIIa, (c) T-IIIb and (d) T-IV.

Figure S4. UV-visible spectra monitoring the Brønsted acid ring opening of 1 to 2 using (A) a TFA control (B) T-II, (C) T-IIIb and (D) T-IV as heterogeneous catalysts. The reactions were monitored as a function of time: (a) 0 h, (b) 1 h, (c) 3 h, (d) 5 h, (e) 24 h, (f) 3 d, (g) 5 d and (h) from the initial absorption of 1.

102

96

Figure S5. UV-visible spectra monitoring the Brønsted acid ring opening of 7.5 μM 1 under TFA acidic conditions in 14:1 MeCN/H₂O. The reactions were monitored as a function of time: (a)
 before TFA addition, (b) immediately following TFA addition 0 h, (c) 2 d and (d) 5 d. Note no change in the absorption spectrum as (b), (c) and (d) are all overlapping.

Figure S6. Fluorescence spectra monitoring the Brønsted acid ring opening of **1** to **2** using (A) a TFA control, (B) T-II, (C) T-IIIb and (D) T-IV as heterogeneous catalysts. The reactions were monitored as a function of time: (a) 1 h, (b) 3 h, (c) 4 h, (d) 6 h, (e) 30 h and (f) 4 d.

Figure S7. ¹H NMR spectra (CD₃CN) and peak attribution of 1 and 2. The spectrum of 2 was obtained by adding 10 equivalents of TFA to a solution of 1 in CD₃CN. The spectra have been collapsed into the 9-4 ppm region in order to illustrate the peaks most relevant to the discussion. (full ¹H NMR enumeration can be found in Ref. 1 of the Supporting Information).

Figure S8. ¹H NMR spectra of 1 in CD_3CN (a) immediately, (b) 2 h (c) 24 h and (d) 48 h following the addition of T-IIIa.

Figure S9. (a) Diffuse reflectance and (b) solid state fluorescence spectra of product 2 adsorbed onto Nb₂O₅•nH₂O T-IIIa.

Figure S10. ¹H NMR spectra of 1 in CD₃CN (a) immediately, (b) 2 h and (c) 96 h after the addition of Nb₂O₅•nH₂O T-I.

Figure S11. UV-visible spectra monitoring the reusability of catalyst T-I in the Brønsted acid
 ring opening of 150 μM 1 to 2 (40 mg of T-I in 10 mL of MeCN) following 1 day of reaction: (a)
 Trial 1 and (b) Trial 2.

188 Note: Catalyst recovery and use was carried out as follows-

Following one day of reaction, the catalyst was recovered by centrifugation at 3500 rpm for 10 ¹⁹⁰ minutes in a 15 mL Falcon tube. The supernatent was decanted and saved for analysis, while the catalyst was washed 5 times with 5 mL of MeCN and then left to dry overnight in the fumehood.

- ¹⁹² The following day, the catalyst was placed under vacuum for 3 hours to remove any residual MeCN. The catalyst was then weighed and the reaction scaled down accordingly to obtain the
- same concentrations of catalyst to substrate **1** as was stated in the initial reaction.

Figure S12. Schematic representation of the experimental set up for single-molecule fluorescence observation under TIRF illumination ($\lambda_{ex} = 633$ nm, 40 W/cm²) for the Brønsted acid-catalyzed isomerization of 1 (non-fluorescent) to product 2 (fluorescent) over a single Nb₂O₅•*n*H₂O T-I particle.

204

Figure S13. Protonation activity as shown by the conversion of 1 to 2 and detection of the fluorescence from 2. Surface maps A and B depict the accumulated signals for the first 25 seconds and the subsequent 25 seconds of reaction, respectively. Map C presents the differences
of A minus B expanded by an approximate factor of 3. Panel D shows an alternative view of panel C, illustrating both positive and negative peaks (see colour coded scale). Note that this figure is related to the one represented in Figure 7 in the manuscript.

214

216

References

218

1) E. Deniz, S. Sortino, F. M. Raymo, J. Phys. Chem. Lett., 2010, 1, 3506-3509.