Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Highly selective phenol production from benzene on platinum-loaded tungsten oxide photocatalyst with water and molecular oxygen: Selective oxidation of water by holes for generating hydroxyl radical as predominant source of hydroxyl group

Osamu Tomita,^{a,b} Bunsho Ohtani^b and Ryu Abe*a,c

*Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan †Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan ‡JSPS-NEXT Program, Koujimachi, Chiyoda-ku, Tokyo 102-0083, Japan

E-mail: <u>ryu-abe@scl.kyoto-u.ac.jp</u>

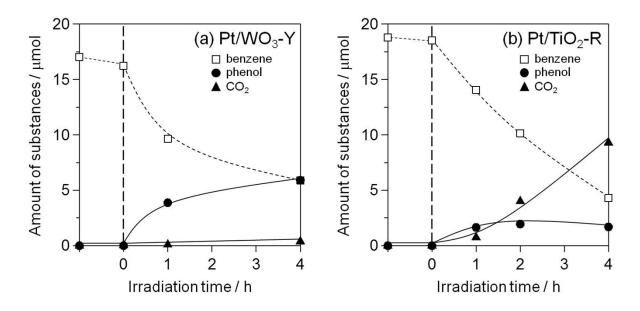


Figure S1. Time course of hydroxylation and oxidation of benzene over (a) Pt/WO₃-Y and (b) Pt/TiO₂-R photocatalysts in aerated aqueous solutions of benzene (18.8 μ mol) under ultraviolet and visible light irradiation (300 < λ < 500 nm).

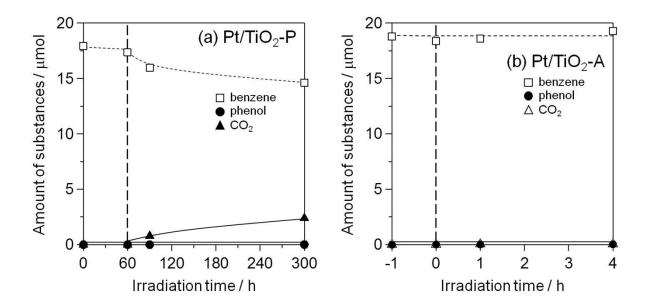


Figure S2. Time course of photocatalytic oxidation of benzene over (a) Pt/TiO₂-P and (b) Pt/TiO₂-A photocatalysts in aerated aqueous solutions of benzene (18.8 μ mol) under visible light irradiation (400 < λ < 500 nm).

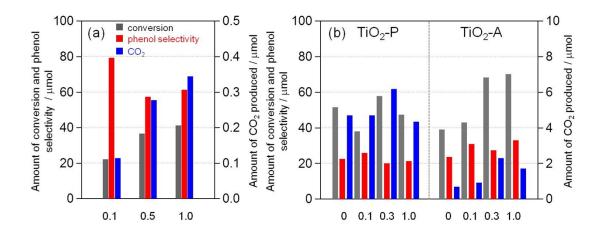


Figure S3. Influence of Pt amount on the amount of conversion, phenol selectivity, and amount of CO_2 on (a) Pt/WO₃-K and (b) TiO₂ photocatalyst during hydroxylation of benzene (irradiation time 1 h).

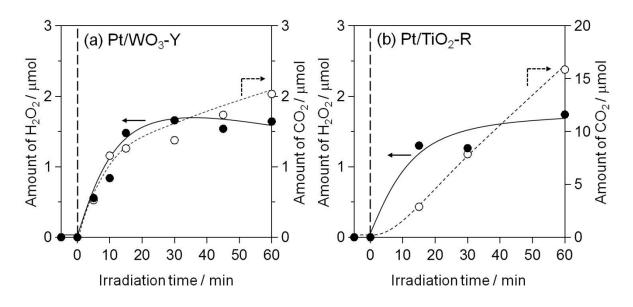


Figure S4. Time course curves of H_2O_2 and CO_2 generation over (a) Pt/WO₃-Y and (b) Pt/TiO₂-R photocatalysts suspended in AcOH solution under ultraviolet and visible light irradiation (300 < λ < 500 nm).

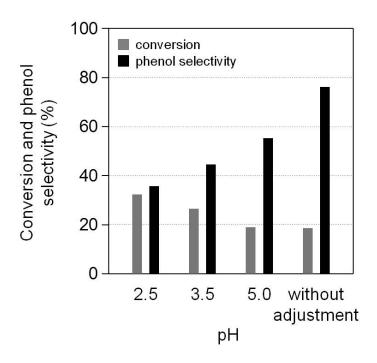


Figure S5. Dependence of photocatalytic hydroxylation of benzene on pH for use of Pt/WO₃-K photocatalyst.

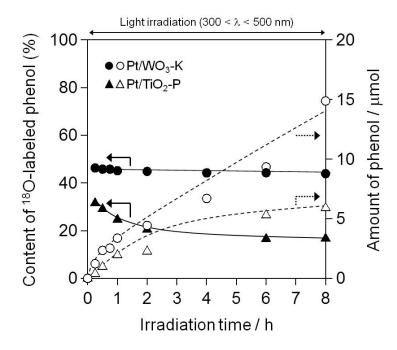


Figure S6. Time course of photocatalyzed phenol production from benzene on Pt/WO_3 -K and Pt/TiO_2 -P samples. Reactions were conducted in $H_2^{16}O-H_2^{18}O$ mixed solvent containing benzene and normal molecular ${}^{16}O_2$.

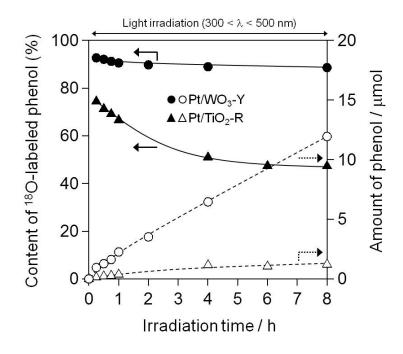


Figure S7. Time course of photocatalyzed phenol production from benzsene on Pt/WO₃-Y and Pt/TiO₂-R samples. Reactions were conducted in ¹⁸O-enriched water (98% $H_2^{18}O$) containing benzene and normal molecular ¹⁶O₂.

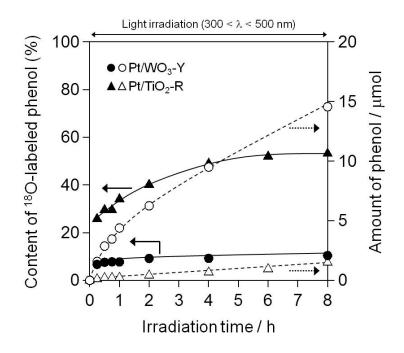


Figure S8. Time course of photocatalyzed phenol production from benzene on Pt/WO_3 -Y and Pt/TiO_2 -R samples. Reactions were conducted in normal water ($H_2^{16}O$) containing benzene and molecular ¹⁸O₂.

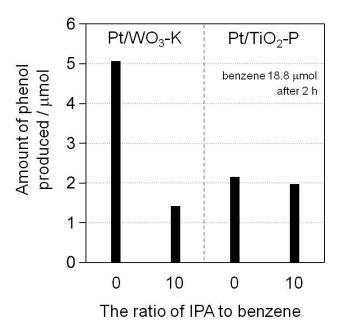


Figure S9. Amount of phenol produced from hydroxylation of benzene in the presence of IPA over Pt/WO₃-K and Pt/TiO₂-P photocatalysts.

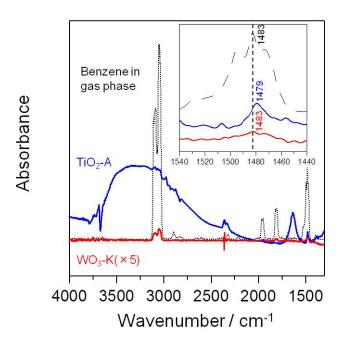


Figure S10. FT-IR subtraction spectra of benzene on photocatalysts.

Figure S11. Influence of initial concentration of benzene on the amount of phenol, dihydroxylated benzene and CO_2 on (a) Pt/WO₃ and (b) TiO₂ photocatalysts during hydroxylation of benzene (Pt: 0.1 wt.%).

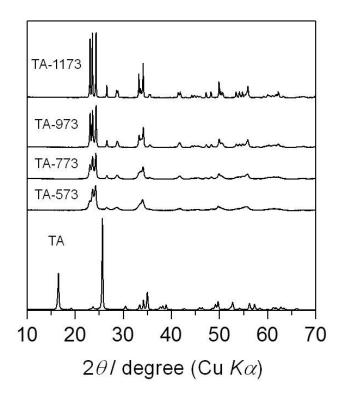


Figure S12. XRD pattern of WO_3 samples obtained from tungstic acid (H_2WO_4 , TA) as the W precursor.

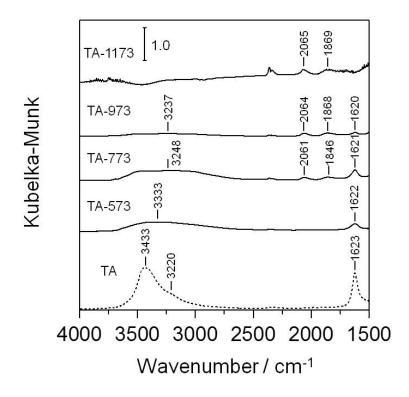


Figure S13. IR spectra of WO_3 samples obtained from tungstic acid (H_2WO_4 , TA) as the W precursor.

Table S1. Direct hydroxylation of benzene to phenol on WO₃-TA (prepared by calcination of tungstic acid powder) in normal water ($H_2^{16}O$) containing benzene and molecular ¹⁸O₂.

Entry	Calcination temperature / K	Content of labeled phenol (%) (Amount of phenol produced / µmol)	
		1 h	8 h
1	573	95.1 (0.6)	95.2 (2.5)
2	773	94.4 (1.2)	92.0 (3.8)
3	973	96.3 (1.3)	93.3 (4.9)
4	1173	94.9 (0.9)	94.0 (2.2)

Initial concentration of benzene : 500 $\mu mol,~$ Amount of solvent : 1.0 mL Light source : 300 W Xe lamp (300 < l < 500 nm)