Supplementary Information

Quantum chemistry of the Fischer-Tropsch reaction catalysed by a stepped Ruthenium surface

I.A.W. Filot, R.A. van Santen, E.J.M. Hensen*

Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

E-mail: e.j.m.hensen@tue.nl

Table of Content

Table S1: Geometries of the initial, transition and final states of the reactions (Table 1-7)	3
Derivation of formula 2 and 3	13

Table S1: Top view of the initial, transition and final states of the calculated reactions. The number of the reaction refer to the numbers as provided in the Table 1, 2 and 3 in the main article.

25. CHCH₃* + H* \rightarrow CH₂CH₃* + *

Derivation of formula 2 and 3

Considering the following approximations:

- C₁ species are generated from direct CO dissociation. Upon dissociation of CO, C and O will occupy two different sites and oxygen is assumed to be removed from the surface at a very fast pace as compared to the other reaction steps.
- A single type of C_n species is assumed (n>0) that will serve as the C_n intermediate.

The rate of C_n generation is then:

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta_{C_n} = -k_t\theta_{C_n} + k_{n-1\to n}\theta_{C_1}\theta_{C_{n-1}} - k_{n\to n+1}\theta_{C_1}\theta_{C_n} \qquad \mathsf{NERGEFORMAT} (1.1)$$

where θ_{C_1} is the surface concentration of C_1 species, θ_{C_n} is the surface concentration of C_n species, $k_{n-1\rightarrow n}$ is the rate of C-C coupling to C_n , $k_{n\rightarrow n+1}$ the rate of C-C coupling to C_{n+1} and k_t the rate of chaintermination by hydrogenation to the alkene or the alkane.

Under steady-state conditions, this yields:

$$\theta_{C_n} = \frac{k_{n-1 \to n} \theta_{C_1} \theta_{C_{n-1}}}{k_{n \to n+1} \theta_{C_1} + k_t}$$
 * MERGEFORMAT (1.2)

Given the definition of the chain-growth probability as

$$\alpha_n = \frac{\theta_{C_n}}{\theta_{C_{n-1}}}$$
 * MERGEFORMAT (1.3)

we obtain the following expression

$$\alpha_n = \frac{k_{n-1 \to n} \theta_{C_1}}{k_{n \to n+1} \theta_{C_1} + k_t}$$
 * MERGEFORMAT (1.4)

Assuming that all the coupling rates are independent of chain length, this generalizes to:

$$\alpha = \frac{k_p \theta_{C_1}}{k_p \theta_{C_1} + r_t}$$
 * MERGEFORMAT (1.5)

For the CO insertion mechanism, the exact same formula is obtained under the assumption that the rate of CH_xC-O bond scission is very fast. From our DFT calculations it was found that this is the case.