Asymmetry and Electronic Directionality: A Means to Improving the Red/Near-IR-Light-Responsive Photoactivity of Phthalocyanine-Sensitized Carbon Nitride

Xiaohu Zhang,^a Lijuan Yu,^a Renjie Li^{*},^a Tianyou Peng^{* a} and Xingguo Li^b

1. Calculation of activation energy

The activation energy of a catalytic reaction can be calculated by the following experimental Arrhenius equation based on rate constant and temperature

$$k = A e^{-Ea/RT}$$
⁽¹⁾

Generally, A and Ea are constant, and represent pre-exponential factor and experimental activation energy respectively. $R = 8.314 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ and K represents absolute temperature.

To calculate A and Ea, the equation (1) is commonly changed as its logarithmic form

$$\lg k = -\frac{Ea}{2.303R} \bullet \frac{1}{T} + \lg A$$
 (2)

Therefore, it will be convenient to obtain A and Ea if two T (T_1 , T_2) and k (k_1 , k_2) are known by

$$\lg k_1 = -\frac{Ea}{2.303R} \bullet \frac{1}{T_1} + \lg A \qquad (3)$$

$$\lg k_2 = -\frac{Ea}{2.303R} \bullet \frac{1}{T_2} + \lg A \qquad (4)$$

When (4) - (3), (5) is obtained

$$\lg \frac{k_2}{k_1} = -\frac{Ea}{2.303R} \bullet \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \quad (5)$$

For the present system, the temperature of the suspension after 1 h irradiation under $\lambda \ge 500$ nm reaches to ~54 °C due to the high intensity of Xe-lamp. However, the he temperature of the suspension after 1 h irradiation under monochromatic light irradiation ($\lambda = 685$, 700 or 760 \pm 10 nm) can maintain as room temperature (~ 25 °C) due to the low transmission light intensity. Generally, the activation energy (*Ea*) for a system is a constant and has nothing to do with reaction conditions. Therefore, it is reasonable to use equation (5) to calculate *Ea* according to the two reaction rates and temperatures under $\lambda \ge 500$ nm and monochromatic light irradiation respectively. Take Zn-*tri*-PcNc-2-Pt/g-C₃N₄ as example, the $k_1 = 173.3$ µmol/h (which is obtained by the linear fitting of first 10 h of Figure 5) and $T_1 = 327$ K under $\lambda \ge 500$ nm, and the $k_2 = 27.7$ µmol/h and $T_2 = 298$ K under $\lambda = 700 \pm 10$ nm. Therefore, the activation energy (*Ea*) for Zn-*tri*-PcNc-2-Pt/g-C₃N₄ is 50.72 kJ/mol. Accordingly, the activation energy (*Ea*) for the six system of Zn-*tri*-PcNc-2-Pt/g-C₃N₄, Zn-*tri*-PcNc-1-Pt/g-C₃N₄, are 50.72 kJ/mol. Accordingly, the activation energy (*Ea*) for the six system of Zn-*tri*-PcNc-2-Pt/g-C₃N₄, Zn-*tri*-PcNc-1-Pt/g-C₃N₄ are 50.72, 41.63, 58.50, 69.81, 38.73 and 88.06 kJ/mol respectively.

2. EIS analysis

Figure S1. EIS spectra of the six dyes sensitized $g-C_3N_4$.

Figure S2. Bode plots of the six dyes sensitized $g-C_3N_4$.

Table S1. Photoelectrochemica	l Data of the s	six dyes sens	sitized g-C ₃ N ₄
-------------------------------	-----------------	---------------	---

	2	0 3 1	
system	$R_2(\Omega)$	f(Hz)	τ_{n} (ms)
Zn- <i>tri</i> -PcNc-2-g-C ₃ N ₄	1573	5.486	28.9
Zn- <i>tri</i> -PcNc-1-g-C ₃ N ₄	1235	6.643	23.9
Zn- <i>tri</i> -PcNc-3-g-C ₃ N ₄	1030	8.071	19.7
Zn- <i>tetrad</i> -Nc-3-g-C ₃ N ₄	800	9.766	16.3
Zn-tetrad-Pc-1-g-C ₃ N ₄	593.5	11.91	13.4
Zn-tetrad-Pc-2-g-C ₃ N ₄	542.7	14.36	11.1