The oxidative esterification of ethylene glycol in methanol to methyl glycolate over supported Au catalysts

Yi-Hu Ke, Xiao-Xia Qin, Chun-Ling Liu, Rong-Zhen Yang, Wen-Sheng Dong*

Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China

* To whom correspondence should be addressed. E-mail: <u>wsdong@snnu.edu.cn</u>

Supporting information

Catalysts	Au loading	Mean Au	Au disper-	EG conversion	MGC selectivity	TOF^b
	(wt %)	size (nm)	sion (%)	(%)	(%)	(s^{-1})
Au(2.0)/Al ₂ O ₃	1.32	2.0	58.5	10.2	91.8	0.133
Au(3.0)/Al ₂ O ₃	1.35	3.0	39.0	12.5	92.3	0.239
Au(5.0)/Al ₂ O ₃	1.36	5.0	23.4	6.7	92.6	0.212
Au(7.6)/Al ₂ O ₃	1.34	7.6	15.4	4.5	91.3	0.219

Table s1 Catalytic performance of Au/Al₂O₃ catalysts with varying mean Au particle sizes^a

a: Reaction conditions: catalyst 0.9 g, methanol 17.4 g, EG =3.43g, 3.0 MPa, 100 $^{\circ}$ C, 20 min.

b: The moles of converted ethylene glycol per mole of surface gold atoms per second.

Figure s1. XRD patterns of various supports

Figure s2. TEM micrographs and corresponding Au particles size distributions of Au sols prepared at different temperatures: a) 0; b) 25; c) 60; d) 90°C.

Figure s3. TEM micrographs and corresponding Au particles size distributions for Au/Al₂O₃ catalysts: a) Au(2.0)/Al₂O₃; b) Au(3.0)/Al₂O₃; c) Au(5.0)/Al₂O₃; d) Au(7.6)/Al₂O₃.

Figure s4. TEM micrographs and corresponding Au particles size distributions for the used Au catalysts: a) Au(2.9)/ZnO; b) Au/Al₂O₃; c) Au/SiO₂; d) Au/TiO₂; e) Au/CeO₂.