

Electronic Supporting Information

Mechanistic examination of Au^{III}-mediated 1,5-enyne cycloisomerization by AuBr₂(N-imide)(NHC) / AgX precatalysts – is the active catalyst Au^{III} or Au^I?

Jonathan P. Reeds, Mark P. Healy and Ian J. S. Fairlamb*

Additional NMR spectroscopic investigations

The spectral data for the additional NMR spectroscopic investigations mentioned in the paper are detailed below.

Reaction of AuBr₂(N-TFS)(I'Pe) with AgOTf in acetone-*d*₆

The ¹⁹F NMR spectroscopic data mentioned in the paper is given below (the ¹H NMR spectroscopic data is given in the paper, Figure 7).

Figure S1. ¹⁹F NMR spectroscopic analysis of the reaction of AuBr₂(N-TFS)(I'Pe) with AgOTf in acetone-*d*₆ over time. Key: (a) AuBr₂(N-TFS)(I'Pe) in acetone-*d*₆ (reference spectrum); (b) AuBr₂(N-TFS)(I'Pe) + AgOTf (1:1) after 10 mins; (c) as for (b) after 4.5 h; (d) as for (b) after 22.5 h

Comment: the ¹⁹F signal seen evolving at δ -128.46 corresponds to Au(N-TFS)(I'Pe) {spectrum (d)}. A second minor signal at δ -128.1 ppm, which may relate to free tetrafluorosuccinimide (or N-bromotetrafluorosuccinimide), was observed. This signal has a maximum intensity after 4.5 h {spectrum (c)}, and then is reduced after 22.5 h. A possible explanation is that the free ligand recombined with $[\text{Au}(\text{I}'\text{Pe})]^+$ to form Au(N-TFS)(I'Pe) {or exchanged with $[\text{Au}(\text{I}'\text{Pe})\text{Br}]$ }. This

would suggest that reduction of $\text{AuBr}_2(N\text{-TFS})(\text{I}'\text{Pe})$ to $\text{Au}(N\text{-TFS})(\text{I}'\text{Pe})$ occurs *via* loss of tetrafluorosuccinimidate anion or *N*-bromotetrafluorosuccinimidate. A small amount of hydrolysed tetrafluorosuccinimidate was also observed in these ^{19}F NMR spectra.

Reaction of $\text{AuBr}_2(N\text{-TFS})(\text{I}'\text{Pe})$ with $\text{Ag}[\text{Al}(\text{OC}(\text{CF}_3)_3)_4]$ in acetone- d_6

Figure S2. Stacked ^1H NMR spectra (expanded section) showing the reaction of $\text{AuBr}_2(N\text{-TFS})(\text{I}'\text{Pe})$ with $\text{Ag}[\text{Al}(\text{OC}(\text{CF}_3)_3)_4]$ in acetone- d_6 over time (monitoring the $\text{I}'\text{Pe}$ imidazole proton signal by ^1H NMR spectroscopy, referenced to the residual acetone solvent signal at δ 2.05). Key: (a) $\text{AuBr}_2(N\text{-TFS})(\text{I}'\text{Pe})$ in acetone- d_6 (reference spectrum); (b) $\text{AuBr}_2(N\text{-TFS})(\text{I}'\text{Pe}) + \text{Ag}[\text{Al}(\text{OC}(\text{CF}_3)_3)_4]$ (1:1) after 10 mins; (c) as for (b) after 7 h; (d) as for (b) after 24 h; (e) comparison of reaction of $\text{AuBr}_2(N\text{-TFS})(\text{I}'\text{Pe})$ with AgOTf after 10 mins; (f) as for (e) after 22.5 h; (g) $\text{Au}(N\text{-TFS})(\text{I}'\text{Pe})$ in acetone- d_6 (reference spectrum).

Comment: The reaction afforded $\text{Au}(N\text{-TFS})(\text{I}'\text{Pe})$ and a new broad signal at slightly higher chemical shift $\{\delta$ 7.52; spectrum (c)\}, which is suggested to be $[\text{Au}(\kappa^1\text{-O}=\text{CMe}_2)(\text{I}'\text{Pe})]^+[\text{Al}(\text{OC}(\text{CF}_3)_3)_4]^-$. This broad signal does move up-field after 24 h {spectrum (d)\}.

Reaction of $\text{AuBr}_2(\text{N-TFS})(\text{I}'\text{Pe})$ with AgOTf and varying equivalents of 1-hexene

Figure S3. Stacked ^1H NMR spectra (expanded section) showing the reaction of $\text{AuBr}_2(\text{N-TFS})(\text{I}'\text{Pe})$ with AgOTf (1 equiv.) and varying equivalents of 1-hexene over time in CD_2Cl_2 (referenced to the residual CDHCl_2 solvent signal at 5.31 ppm). Key: (a) $\text{AuBr}_2(\text{N-TFS})(\text{I}'\text{Pe})$ / AgOTf with 2 equivalents of 1-hexene after 24 h; (b) $\text{AuBr}_2(\text{N-TFS})(\text{I}'\text{Pe})$ / AgOTf with 2 equivalents of 1-hexene after 10 mins; (c) $\text{AuBr}_2(\text{N-TFS})(\text{I}'\text{Pe})$ / AgOTf with 1 equivalent of 1-hexene after 10 mins; (d) 1-hexene alone in CD_2Cl_2 .

Comment: No binding of 1-hexene to the neutral Au^{III} imidate complexes occur in the absence of AgOTf . $\text{AuBr}_2(\text{N-TFS})(\text{I}'\text{Pe})$ / AgOTf (1:1) in the presence of 1 equivalent of 1-hexene shows no change in the imidazole signal but the alkene signals are shifted downfield (*ca.* 0.44 ppm, *spectrum c*). Also, another species is detected in this spectrum (visible against the baseline at *ca.* 6.4-6.5 ppm); other minor proton signals accompany this signal at *ca.* 4.9-5.4 ppm). The reaction of 2 equivalents of 1-hexene shows a smaller shift in the alkene signals shift (*ca.* 0.18 ppm), with little change in spin-spin coupling constants relative to free 1-hexene (after 10 mins, *spectrum b*). After 24 h the proton signals are closer to free 1-hexene, but broad (compare *spectrum a* with *spectrum d*). In control tests it was found that 1-hexene can bind AgOTf independently.