Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

for

Hydrocarbon Oxidation Catalyzed by a Cheap Nonheme Imine-based Iron(II) Complex

Giorgio Olivo, Giorgio Arancio, Luigi Mandolini, Osvaldo Lanzalunga and Stefano Di

Stefano*

Table of contents

NMR spectra of 2 , 3 and 4 in CD ₃ CN at 25 °C	SI 2
Formation of 4 from 2 and 3 in CD ₃ CN at 25 °C	SI 3
UV-Vis spectra of 4 and complex 1	SI 4
UV-Vis spectra for generation of complex 1 from $4+Fe(CF_3SO_3)_2$ and from $2+3+Fe(CF_3SO_3)_2$	SI 4
Materials and Methods	SI 5
Oxidation Procedure	SI 6
Oxidation reactions in the absence of ligand 4	SI 8
References	SI 9

Dipartimento di Chimica, Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5 I-00185 Rome, Italy

The ¹H NMR spectrum of **4** in C_6D_6 is identical to that previously reported in the literature.^{S1}

Figure S1. NMR spectra (aromatic region) of 33 mM 2 at increasing time after the addition of 33 mM 3 in CD₃CN at 25 °C. Formation of 4 is complete within 40 min. The spectrum of 3 is reported on the top for the sake of comparison.

Figure S2. UV-Vis spectra of 0.5 mM 4 (black), 0.25 mM $Fe(CF_3CO_3)_2$ (gray) and 0.25 mM 1 (dark purple) in CH₃CN at 25 °C.

Figure S3. UV-Vis spectra of the solutions obtained by: (a) addition of 0.50 mM preformed 4 to 0.25 mM Fe(CF₃CO₃)₂, and (b) addition of 0.50 mM **2** and 0.50 mM **3** to 0.25 mM Fe(CF₃CO₃)₂ in CH₃CN at 25 °C. In both cases spectra were scanned immediately after the addition of components in solution.

Instruments and General Methods

NMR spectra were recorded on either a 300 MHz spectrometer. The spectra were internally referenced to the residual proton solvent signal. UV-Vis spectra were registered by a double-ray spectrophotometer. GC analyses were carried out on a gas chromatograph equipped with a capillary methylsilicone column (30 m x 0.25 mm x 25 μ m) Chrompack CP-Sil 5 CB. GC-MS analyses were performed with a mass detector (EI at 70eV) coupled with a gas chromatograph equipped with a melted silica capillary column (30 m x 0.2 mm x 25 μ m) covered with a methylsilicone film (5% phenylsilicone, OV5).

Materials

All reagents and solvents were purchased at the highest commercial quality and were used without further purification unless otherwise stated. (*d*)-Menthyl acetate was prepared following a literature procedure.^{S2}

Oxidation Procedure

In all oxidation reactions performed at 1% catalyst loading complex **1** was prepared *in situ* treating 1.80 mg (5.08 μ mol) of iron (II) triflate with 50 μ L (10.2 μ mol) of a 0.207 M acetonitrile solution of aldehyde **2** and 50 μ L (10.2 μ mol) of a 0.202 M acetonitrile solution of amine **3**. The solution immediately turned dark purple. At this point, to the reaction vessel were added:

i) 250 μ L of acetonitrile, 14 μ L of AcOH (254 μ mol, 50 mol%) and 54 μ L of cyclohexane (508 μ mol, 100 mol%); or

ii) 200 μ L of acetonitrile, 14 μ L of AcOH (254 μ mol, 50 mol%), and 110 μ L of (*d*)-menthyl-acetate (508 μ mol, 100 mol%).

After the addition of the above reagents, 310 μ L of a 2.50 M solution of H₂O₂ in acetonitrile were added by a syringe pump over a period of 15 minutes, and the reaction mixture was left under stirring for a total time of 90 minutes. After addition of the internal standard and 1.0 mL of a saturated NaHCO₃ solution the mixture was extracted with Et₂O. The organic layer was dried over Na₂SO₄, filtered and analyzed by GC chromatography. In the case of (*d*)-menthyl acetate oxidation the yield was determined by ¹H-NMR spectroscopy.

In oxidation reactions performed at 2.5% catalyst loading complex **1** was prepared *in situ* treating 4.50 mg (12.7 μ mol) of iron (II) triflate with 125 μ L (25.4 μ mol) of a 0.207 M acetonitrile solution of aldehyde **2** and 125 μ L (25.4 μ mol) of a 0.202 M acetonitrile solution of amine **3**. The solution immediately turned dark purple. At this point to the reaction vessel were added:

i) 240 μ L of acetonitrile, 14 μ L of AcOH (254 μ mol, 50 mol%), 63 μ L of tetrahydronaphtalene (508 μ mol, 100 mol%); or

ii) 240 μ L of acetonitrile, 14 μ L of AcOH (254 μ mol, 50 mol%), 68 μ L of α -tetralone (508 μ mol, 100 mol%).

S6

Then 310 μ L of a 2.50 M solution of H₂O₂ in acetonitrile were added by a syringe pump over a period of 15 minutes, and the mixture reaction was left under stirring for a total time of 90 minutes. After addition of the internal standard and 1.0 mL of a saturated NaHCO₃ solution the mixture was extracted with Et₂O; the organic layer was dried over Na₂SO₄, filtered and analyzed by GC chromatography.

In the case of adamantane oxidation, complex **1** was prepared *in situ* treating 0.53 mg of iron (II) trifluoromethanesulfonate (1.50 μ mol) with 14 μ L (3.0 μ mol) of a 0.207 M acetonitrile solution of aldehyde **2** and 15 μ L (3.0 μ mol) of a 0.202 M acetonitrile solution of amine **3**. To the resulting solutions were added: 4.0 μ L of AcOH (75 μ mol, 50 mol%) and 5.0 mL of a 0.030 M acetonitrile solution of adamantane (150 μ mol, 100 mol%). After the addition of the above reagents, 900 μ L (180 μ mol) of a 0.20 M solution of H₂O₂ in acetonitrile were added by a syringe pump over a period of 15 minutes, and the mixture reaction was stirred for 75 minutes. After addition of the internal standard and 1.0 mL of a saturated NaHCO₃ solution the mixture was extracted with Et₂O. The organic layer was dried over Na₂SO₄, filtered and analyzed by GC chromatography.

Table S1. Oxidation of some hydrocarbons by H_2O_2 catalyzed by $Fe(CF_3SO_3)_2$ in CH_3CN at 30 °C. Yields are average of two or three runs. TON are reported in brackets.

Entry	Substrate	Products	Total yield
1 ^{a,b}	A	$ \bigoplus_{OH} + \left(\bigcirc $	6 (6)
		3.5 ±0.5 2.5±0.5	
2 ^{c,d}		no products detected	-
3 ^{b,e}	\bigcirc	OH + OH	16 (11)
		5.5±0.5 11±1	
4 ^{b,e}		ĊĻ	3 (2.4)
		3±1	

^a Conditions: Fe(CF₃SO₃)₂ (1.5 μmol, 1 mol%), adamantane (150 μmol), H₂O₂ (180 μmol, 120 mol%), AcOH (75 μmol, 50 mol%). ^b GC yields. ^c Conditions: Fe(CF₃SO₃)₂ (5.1 μmol, 1 mol%), (*d*)-menthyl acetate (508 μmol), AcOH (254 μmol, 50 mol%), H₂O₂ (610 μmol, 120 mol%). ^d ¹H-NMR yield. ^e Conditions: Fe(CF₃SO₃)₂ (13 μmol, 2.5 mol%), substrate (508 μmol), H₂O₂ (1.16 mmol, 200 mol%), AcOH (254 μmol, 50 mol%).

References

- S1 C. Incarvito, M. Lam, B. Rhatigan, A. L. Rheingold, C. J. Qin, A. L. Gavrilova, B. Bosnich, J. Chem. Soc., Dalton Trans., 2001, 3478.
- S2 S. Hata, M. Iguchi, T. Iwasawa, K. Tomioka, K.-I. Yamada, Org. Letters 2004, 6, 1721.