Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2014

Supplementary Content for:

Carbon-Supported Gas-Cleaning Catalysts Enable

Syn Gas Methanation At Atmospheric Pressure

Meherzad F. Variava,* Tamara L. Church, Nikan Noorbehesht, Andrew T. Harris and Andrew

I. Minett*

Item	Page
S1. Purification of MWNTs	S2
S2. Characterization of MWNTs	S4
S3. Apparatus	S5
S4. Interpretation of Mass Spectra	S6
S5. N ₂ Adsorption-Desorption Isotherms	S8
S6. Raman Spectra	S9
S7. Thermogravimetric Analysis of 13Ni/MWNTs	S10
S8. X-ray Photoelectron Spectroscopy of 13Ni/MWNTs	S11
S9. Transmission Electron Microscopy Images of 13Ni/MWNTs	S12
S10. X-ray Diffraction Patterns	S13
S11. H ₂ -based Investigations on MWNTs	S15
S12. Control Methanation Reactions	S16
S13. Thermodynamic Simulations	S17
S14. Effect of Process Metrics	S18
S15. Characterisation and Regeneration of Spent Catalysts	S21
S16. References	S24

S1. Purification of MWNTs

Typically, as-synthesized MWNTs (200 mg) were added to $H_2SO_4(aq)$ (20 mL, 5 M) in a PTFE-lined microwave transparent pressure vessel. The vessel was transferred to a multimode microwave (MDS-10, Sineo) for digestion (20 °C min⁻¹ to 220 °C, 20 min hold, 1000 W). The products were then filtered through an ethanol-wetted, 0.5-µm PTFE membrane (Millipore), washed with deionized (DI) water until the rinse water reached pH 7 (pH strips, LIVINGSTONE), and dried in a vacuum oven (120 °C, 24 h). The purified MWNTs were analysed using transmission electron microscopy (TEM) and thermogravimetric analysis (TGA).

Figure S1. (A), (B) TEM of purified MWNTs.

Figure S2. TGA of MWNTs (50 sccm instrument air, 5 °C min⁻¹).

Figure S3. Deconvoluted X-ray photoelectron spectra of the purified MWNTs in the (a) C 1*s* and (b) O 1*s* regions.

S2. Characterization of MWNTs

For thermogravimetric analysis (TA SDT Q600), a quantity of sample (~10 mg) was heated (5 °C min⁻¹, 1000 °C) under instrument air (50 sccm). For transmission electron microscopy (TEM), 13Ni/MWNTs (~10 mg) were added to ethanol (15 mL) and the mixture was sonicated using a Branson Sonifier 450 tip sonicator (max power = 400 W, 10 min). Several droplets of the resulting mixture were dropped onto a holey carbon film, supported on a 200-mesh copper grid, and dried in air prior to analysis in a TEM (CM120-Biofilter (Philips), 120 kV). The crystalline structures of the synthesized catalysts were evaluated by X-ray diffraction (XRD, $2\theta = 20-75^{\circ}$, interval = 0.0016°, dwell = 10 s) using Cu K α radiation ($\lambda = 0.1542$ nm, SIEMENS D5000). The crystallite size was calculated via the Scherrer Equation (Equation S1),¹

$$\tau = \frac{B\lambda}{\beta \cos\vartheta} \tag{S1}$$

where λ , B, β , β , and τ are the wavelength of the X-rays used, shape factor (dimensionless, \approx 0.94), Bragg angle, full width at half maximum (FWHM) of the peak in an XRD pattern and the mean size of the crystalline particle, respectively. Raman spectra were recorded (InVia, Renishaw) using an Ar⁺ ion laser ($\lambda = 514.5$ nm). X-ray photoelectron spectroscopy (XPS) was carried out (ESCALAB250Xi, Thermo Scientific) using monochromatized Al Ka X-rays as the excitation source, and XPS-derived concentrations were calculated from detection-sensitivityadjusted peak areas. To further verify the Ni loadings on the MWNTs, quantitative elemental analysis was performed using inductively coupled plasma-atomic emission spectrometry (ICP-AES, Vista AX, Varian). Briefly, NiO was extracted/dissolved from TGA oxidation residues by digestion in known volumes of Piranha solution (conc. $H_2SO_4:H_2O_2 = 2:1, 40$ °C, 3 h), further diluted to exactly 20 mL with DI water using a micropipette (100-1000 µL, VITLAB) and analysed at 230.078 nm. Final Ni concentrations were determined by comparing the resulting signal to a calibration curve (10 points) that was prepared using pre-diluted external standards (CHOICE Analytical). For temperature-programmed reduction with H₂ (H₂-TPR), the catalysts (~50 mg) were pretreated in an inert atmosphere (Ar, heated at 10 °C min⁻¹ to 250 °C, hold 2 h) prior to analysis (3% H₂ in Ar, 60 sccm, 10 °C min⁻¹, 200–800 °C). The H₂ signal (mass units) was analyzed via the quadrupole mass spectrometer (MS; CIRRUS, MKS; 15 scans min⁻¹).

S3. Apparatus

Figure S4. Schematic of the reactor unit for CO methanation through a bed of MWNTs-supported Ni catalysts. Within the "Reaction Zone", the catalyst bed (black) is supported on either side by quartz wool plugs (grey), which are in turn supported by two fingers (not shown) that were blown into the quartz tube during manufacture. Temperatures were recorded inside the quartz reactor as well as in the heated zone within the furnace (OTX-1200, MTI) and the difference ($T_{CatalystBed} - T_{HeatedZone}$) was ~5 °C. Gas flows were controlled using mass flow controllers (MFCs; Alicat Scientific). Further, even at high weight hourly space velocities (>32000 scc g_{cat}⁻¹ h⁻¹), the pressure upstream of the catalyst bed was just above ambient (~15–16 psi). The needle valve was slightly open in order to bleed any water generated while keeping the system closed. H₂O generation was minimal due to the low overall reactant flow rates (37 sccm). Finally, for gas analysis, samples of the reactant and product gas streams (~13 sccm) were transferred via a heated capillary to the internally heated quadrupole mass spectrometer (MS) where 15–18 scans min⁻¹ were collected. Note the presence of a bypass; this made pre-, mid- (every 3–6 h), and post-reaction calibrations, which are critical to reproducible quantitative analysis with quadrupole mass spectrometers, simple and fast.

S4. Interpretation of Mass Spectra

m/z	Key ion fragments	Represented species
2	H_2^+	Hydrogen
4	He ⁺	Helium
16	$CH_4^{+[a]}$	Methane
28	$\mathrm{CO}^{+[a]}$	Carbon monoxide
44	CO_2^+	Carbon dioxide

Table S1. Key gas species and corresponding ion fragments.

^[a] Contributions from CO_2 fragmentation to CO^+ and O^+ (m/z of 28 and 16, respectively) and CO fragmentation to C^+ and O^+ (m/z of 12 and 16, respectively), where applicable, were deducted (see Figure S6).

Figure S5. A sample ten-point [CO] calibration curve, where i (mass units) is the intensity of the species as recorded by the MS and m (sccm) is the standard mass flow of the particular gas, as set on the MFCs.

$$\dot{m}_{[gas]} = \left(\left(Sl \times \frac{\dot{i}_{[gas]}}{\dot{i}_{[He]}} \right) + Int \right) \times \dot{m}_{[He]}$$

Equation S2. The final mass flow $\dot{m}_{[gas]}(sccm)$, where i (mass units) is the intensity of the gases (as recorded by the MS), Sl and Int are the slope and intercept, respectively, of the calibration curve (Fig. S5), and $\dot{m}_{[He]} = 2$ sccm is the flow rate of the internal standard.

Figure S6. MS ionisation patterns of Ar-diluted CO (25%), H_2 (20%), CH_4 (30%) and CO_2 (5%).

S5. N₂ Adsorption-Desorption Isotherms

Figure S7. These N₂ adsorption-desorption isotherms, measured at -196 °C on a sorption apparatus (Autosorb-1, Quantachrome), were subsequently used to calculate the specific surface area (Brunauer–Emmett–Teller,² S_{BET}), pore size (Barrett–Joyner–Halenda,³ BJH, adsorption branch), and pore volume of the catalysts.

S6. Raman Spectra

Figure S8. Raman spectra of MWNTs, NO-MWNTs and 13Ni/MWNTs. I_x = intensity of band x. Note, the D band at 1340 cm⁻¹ is attributed to defects and the disorder within the walls of the MWNTs, and the G band at 1590 cm⁻¹ is attributed to the C–C stretching mode of ordered graphitic carbon.⁴

S7. Thermogravimetric Analysis of 13Ni/MWNTs

Figure S9. TGA of 13Ni/MWNTs (50 sccm instrument air, 5 °C min⁻¹).

S8. X-ray Photoelectron Spectroscopy of 13Ni/MWNTs

Figure S10. Survey XPS spectra of 13Ni/MWNTs catalysts.

Figure S11. Narrow scan XPS of 13Ni/MWNTs in the C 1*s* region.

845 849 853 857 861 865 869 873 877 881 885 889 Binding Energy (eV)

Figure S12. Ni 2*p* XPS spectra of 13Ni/MWNTs and 13Ni/MWNTs-r. Note the presence of the peak at 852.8 eV (for 13Ni/MWNTs-r), similar to the reported value for Ni^{0,5} However, a Ni²⁺ 2*p*_{3/2} peak at 856.4 eV was also present, likely formed from the exposure to air pre-analysis and/or from incomplete reduction. Note, the small difference between the BE values (<0.1 eV between the measured values and those reported for NiO) are within the range of variation caused by surface charge compensation.⁶

S9. Transmission Electron Microscopy Images of 13Ni/MWNTs

Figure S13. (a, b) Additional TEM images of the 13Ni/MWNTs.

S10. X-ray Diffraction Patterns

Figure S15. XRD pattern of NO-MWNTs. Indicated phase: (-) the graphite structure (002) and (100) planes of MWNTs at 26.5° and 43.2°, respectively.

S11. H₂-based Investigations of MWNTs

Figure S16. H₂-TPR of 13Ni/MWNTs-r. Analysis conditions: ~50 mg sample, 3% H₂ in Ar, 60 sccm, heated at 10 °C min⁻¹ over 200–800 °C, sampled at 15 scans min⁻¹.

Figure S17. Effect of heating in H₂ (0.5%, bal. Ar, 35 sccm, dT/dt = 10 °C min⁻¹) on purified MWNTs (50 mg).

S12. Control Methanation Reactions

Figure S18. Control CO methanations. NO-MWNTs were synthesized by dispersing MWNTs in EtOH then drying and calcining in NO (0.1%, 3 h, 500 °C). MWNT-NO-H₂ treated was synthesized by annealing NO-MWNTs in H₂ prior to testing. 13Ni/ γ -Al₂O₃, synthesized via incipient wetness impregnation and calcined in NO (as per *x*Ni/MWNTs synthesis, experimental section), was mixed with quartz wool, then reduced (10% H₂ in Ar, 50 sccm, 30 °C min⁻¹ to 700 °C, hold 1 h). Reaction Conditions: total flow = 37 sccm (CO/H₂/Ar = 1:3:3), ~70 mg of catalyst (when used). Conversion values were reported over 3 h of isothermal operation, except in the case of unreduced 13NiO/MWNTs, which was calculated after 15 min isothermal operation to avoid in situ reduction of the NiO).

S13. Thermodynamic Simulations

Figure S19. Thermodynamic simulations (Aspen Plus v7.3, Soave-Redlich-Kwong equations of state, Gibbs free reactor) starting from gas inputs from a previous report (---), and the current ($^{\circ}$) gas composition used. Note, ($^{\bullet}$) denotes the extracted data points (GraphClick, Arizona Software) of thermodynamic simulations from Gao et al.,⁷ for comparison with our developed model.

S14. Effect of Process Metrics

Weight-hourly space velocities (WHSVs), critical parameters for the large-scale industrial application of plug-flow catalysts,⁸ were varied to ascertain the conversion and throughput limits of these catalysts (Figure S20). Conversions were maintained for WHSVs up to 40000 scc g_{cat}^{-1} h⁻¹; however, CO conversions were negligible at higher values and the catalytic effect was marginal, even when the temperature was raised to 400 °C. Thus, a WHSV of 32000 scc g_{cat}^{-1} h⁻¹ was used, unless mentioned otherwise.

Figure S20. CO methanation over 13Ni/MWNTs at various WHSV values (scc g_{cat} ⁻¹ h⁻¹). Experimental details: catalysts (70 mg) were reduced (550 °C, 10% H₂ in Ar, 50 sccm, 60 min) and cooled (Ar, 65 sccm) to reaction temperature prior to introducing the reactants (13.5% CO, 41% H₂, 2 sccm He and balance Ar, total flow = 37 sccm). Values reported are after 5 h isothermal operation. WHSVs were altered by adjusting the amount of catalyst used.

The H₂/CO ratio (HCOR) in synthesis gas varies from one to eight, depending upon the feedstock and operating efficiencies of downstream gas-conditioning reactors (such as water–gas shift reactors).⁹ The ideal HCOR for SNG synthesis from CO is ~3; we, however, tested the resilience of our catalysts to practical fluctuations that may occur and impact the equilibria described (Equations 1 and 3 within the manuscript). Although a low HCOR (i.e. <3) can generally be increased using a water–gas shift reactor unit (Equation S3), both H₂-poor and H₂-rich conditions were investigated to test the applicability limits of the catalyst.

 $CO + H_2O \rightleftharpoons H_2 + CO_2$

(S3)

The effect of the HCOR variations is illustrated in Figure S20. The CO conversion was not significantly changed when the HCOR was increased from 3 to 5 (Figure S21). However, a higher HCOR enhanced the selectivity of the CO conversion to CH_4 , which reached ~90% for HCOR = 5 (Figure S21). These observations were consistent with previous research,⁷ where increased CH₄ selectivity was found by increasing the HCOR. However, at a lower HCOR (HCOR = 1 i.e. Equation S3), CO conversion reaches a maximum of ~65%, though the CH₄ selectivity does not exceed ~43%. Thus, although it is possible to generate CH₄ within a wide range of HCORs, high CH₄ yields can only be realised when HCOR is greater than 3.

Figure 21. Effect of H_2/CO ratio on (a) conversion and (b) CH₄ selectivity of CO methanation over 13Ni/MWNTs-r. Experimental conditions: catalysts (70 mg) were reduced (550 °C, 10% H₂ in Ar, 50 sccm, 60 min) and cooled (Ar, 65 sccm) to reaction temperature, prior to introducing the reactants (13.5% CO, variable% H₂, 2 sccm He and balance Ar, total flow = 37 sccm). Values reported are after 5 h isothermal operation. H₂/CO ratios were varied by altering the H₂ and Ar (balance) flows while keeping the total gas flow at 37 sccm.

S15. Characterisation and Regeneration of Spent Catalysts

Figure S22. Thermogravimetric analyses (TGA) of 13Ni/MWNTs-r after use in a 150-h CO methanation at 350 °C in a fixed-bed CVD-type system. Analysis was performed under 50 sccm instrument air, dT/dt = 5 °C min⁻¹.

Figure S23. Thermogravimetric analyses (TGA) in a CO_2 atmosphere (30% in Ar, ramp at 5 °C min⁻¹). 13Ni/MWNTs-r were synthesized by treating 13Ni/MWNTs in a reducing atmosphere (10% H₂ in Ar, 550 °C, 50 sccm for 60 min); NO-MWNTs were dispersed in EtOH then dried and calcined in NO (0.1%, 3 h, 500 °C).

Figure S24. CO methanation performance of 13Ni/MWNTs-r and CO₂-treated (10%, in Ar for 40 min at 550 °C) 13Ni/MWNTs-r catalysts after 60 h. Experimental conditions: catalysts (70 mg) were reduced (550 °C, 10% H₂ in Ar, 50 sccm, 60 min) and cooled (Ar, 65 sccm) to 350 °C prior to introducing the reactants (13.5% CO, 41% H₂, 2 sccm He and balance Ar, total flow = 37 sccm).

Figure S25. X-ray diffraction pattern of 13Ni/MWNTs that were subjected to a H₂ atmosphere (10% H₂ in Ar, 50 sccm, T = 550 °C) for an extended period (t = 5 h). Indicated phases are: (-) graphite plane (002) of MWNTs at 26.5°; (o) Ni (JCPDS 45-1027) at 44.8° (111) and 51.8° (200).

S16. References

- 1. P. Scherrer, *Göttinger Nachr. Math. Phys.*, 1918, **2**, 98-100.
- 2. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309-319.
- 3. E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc., 1951, 73, 373-380.
- (a) S. Osswald, M. Havel and Y. Gogotsi, *J. Raman Spectrosc.*, 2007, 38, 728-736; (b)
 M. S. Dresselhaus, G. Dresselhaus, R. Saito and A. Jorio, *Phys. Rep.*, 2005, 409, 47-99;
 (c) S. Costa and E. Borowiak-Palen, *Acta Phys. Pol.*, *A*, 2009, 116, 32-35.
- 5. T. Hou, L. Yuan, T. Ye, L. Gong, J. Tu, M. Yamamoto, Y. Torimoto and Q. Li, *Int. J. Hydrogen Energy*, 2009, **34**, 9095-9107.
- 6. (a) B. L. Maschhoff and N. R. Armstrong, *Langmuir*, 1991, 7, 693-703; (b) C. S. Kuivila, J. B. Butt and P. C. Stair, *Appl. Surf. Sci.*, 1988, **32**, 99-121.
- 7. J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu and F. Su, RSC Adv., 2012, 2, 2358-2368.
- 8. Z. Liu, B. Chu, X. Zhai, Y. Jin and Y. Cheng, *Fuel*, 2012, **95**, 599-605.
- (a) R. M. Navarro, M. A. Peña and J. L. G. Fierro, *Chem. Rev.*, 2007, 107, 3952-3991; (b)
 Y. Richardson, J. Blin and A. Julbe, *Prog. Energy Combust. Sci.*, 2012, 38, 765-781.