Implications of Coverage-Dependent O Adsorption for Catalytic NO Oxidation on the Late Transition Metals

Supplemental Information

Kurt Frey¹, David J Schmidt², Chris Wolverton³, William F Schneider^{*}

- 1- kurtfrey@gmail.com; Department of Chemical and Biomolecular Engineering; 182 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556
- 2 daspiffy@gmail.com; Department of Chemical and Biomolecular Engineering; 182 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556
- 3 c-wolverton@northwestern.edu; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Cook Hall Room 2036, Evanston, IL 60208
- * Corresponding Author; wschneider@nd.edu; Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556; Department of Chemical and Biomolecular Engineering; 182 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556

A unique identifier for each formation energy calculation, fractional coverage, supercell vectors, adsorbate arrangement, and k-point mesh size are given in table A.1.

774	Coverage	Supercell	Adsorbate	k-Point	E _{frm} (eV/site)										
TD#	N_{ads}/N_{site}	Vectors	Vectors		Ru	Os	Co	Rh	Ir	Ni	Pd	Pt	Cu	Ag	Au
110	0/1	a,b,c		12,12, 1	1.001	1.178	0.750	0.806	0.914	0.651	0.567	0.631	0.464	0.351	0.343
111	1/1	a,b,c		12,12, 1	-1.199	-0.949	-1.068	-0.513	-0.140	-0.322	0.305	0.393	0.589	1.308	1.364
112	0/2	a,a+2b,c		10, 6, 1	1.015	1.178	0.743	0.809	0.915	0.647	0.558	0.632	0.462	0.349	0.341
113	1/2	a,a+2b,c		10, 6, 1	-0.340	-0.147	-0.558	-0.135	0.075	-0.409	0.026	0.134	-0.062	0.354	0.455
114	2/2	a,a+2b,c		10, 6, 1	-1.199	-0.960	-1.071	-0.514	-0.144	-0.324	0.299	0.392	0.597	1.316	1.363
115	0/3	3a+2b,-3a-b,c		10,10, 1	1.011	1.173	0.743	0.793	0.904	0.656	0.553	0.640	0.464	0.350	0.344
116	1/3	3a+2b,-3a-b,c		10,10, 1	0.102	0.272	-0.132	0.154	0.341	-0.063	0.183	0.302	0.099	0.346	0.358
117	2/3	3a+2b,-3a-b,c		10,10, 1	-0.651	-0.474	-0.840	-0.317	-0.070	-0.517	0.059	0.170		0.613	0.667
118	3/3	3a+2b,-3a-b,c		10,10, 1	-1.196	-0.964	-1.070	-0.528	-0.149	-0.303	0.298	0.397	0.604	1.330	1.370
119	0/3	a-b,a+2b,c		7, 7, 1	1.014	1.158	0.745	0.804	0.920	0.658	0.573	0.653	0.461	0.346	0.337
120	1/3	a-b,a+2b,c		7, 7, 1	0.109	0.288	-0.226	0.132	0.318	-0.190	0.143	0.262	-0.069	0.213	0.344
121	2/3	a-b,a+2b,c		7, 7, 1	-0.653	-0.502	-0.779	-0.258	-0.081	-0.526	0.023	0.102	0.040	0.579	0.613
122	3/3	a-b,a+2b,c		7, 7, 1	-1.187	-0.974	-1.072	-0.510	-0.135	-0.318	0.308	0.395	0.600	1.324	1.358
124	0/4	2a,a+2b,c		5, 6, 1	1.014	1.195	0.742	0.804	0.913	0.651	0.565	0.638	0.463	0.350	0.340
125	1/4	2a,a+2b,c		5, 6, 1	0.281	0.467	-0.006	0.279	0.444	-0.002	0.225	0.323	0.038	0.220	0.314
126	2/4	2a,a+2b,c	a-b	5, 6, 1	-0.302	-0.114	-0.571	-0.089	0.103	-0.425	0.046	0.149	-0.078	0.365	0.480
127	3/4	2a,a+2b,c		5, 6, 1	-0.817	-0.627	-0.892	-0.359	-0.117	-0.518	0.054	0.158	0.162	0.754	0.812
128	4/4	2a,a+2b,c		5, 6, 1	-1.198	-0.954	-1.068	-0.517	-0.145	-0.323	0.299	0.396	0.602	1.325	1.360
129	0/4	2a,2b,c		6, 6, 1	1.002	1.185	0.754	0.803	0.916	0.655	0.574	0.633	0.472	0.366	0.351
130	1/4	2a,2b,c		6, 6, 1	0.237	0.434	-0.009	0.266	0.445	-0.005	0.223	0.309	0.026	0.222	0.316
131	2/4	2a,2b,c	a	6, 6, 1	-0.347	-0.150	-0.551	-0.142	0.072	-0.406	0.034	0.133	-0.067	0.357	0.458
132	3/4	2a,2b,c		6, 6, 1	-0.839	-0.628	-0.895	-0.392	-0.126	-0.512	0.052	0.170	0.191	0.788	0.876
133	4/4	2a,2b,c		6, 6, 1	-1.207	-0.947	-1.065	-0.517	-0.148	-0.320	0.307	0.397	0.607	1.330	1.357
134	0/4	a,2a+4b,c		10, 3, 1	1.014	1.183	0.741	0.803	0.912	0.652	0.566	0.635	0.463	0.345	0.340
135	1/4	a,2a+4b,c		10, 3, 1	0.330	0.501	0.080	0.324	0.480	0.110	0.286	0.364	0.183	0.335	0.344
136	2/4	a,2a+4b,c	a+b	10, 3, 1	-0.239	-0.076	-0.460	-0.041	0.159	-0.257	0.157	0.237	•	•	
137	3/4	a,2a+4b,c		10, 3, 1	-0.797	-0.608	-0.943	-0.380	-0.113	-0.514	0.101	0.188	•		
138	4/4	a,2a+4b,c		10, 3, 1	-1.200	-0.954	-1.067	-0.516	-0.145	-0.323	0.299	0.393	0.600	1.320	1.351
139	0/5	-2a-3b,3a+2b,c		6, 6, 1	1.005	1.179	0.745	0.803	0.923	0.658	0.568	0.643	0.465	0.351	0.339
140	1/5	-2a-3b,3a+2b,c		6, 6, 1	0.409	0.591	0.143	0.380	0.550	0.131	0.290	0.390	0.124	0.249	0.315
141	2/5	-2a-3b,3a+2b,c	a+2b	6, 6, 1	-0.084	0.107	-0.386	0.026	0.227	-0.308	0.086	0.200	-0.112	0.247	0.370
142	2/5	-2a-3b,3a+2b,c	b	6, 6, 1	-0.083	0.082	-0.330	0.061	0.256	-0.224	0.140	0.235	-0.007	0.333	0.407
143	3/5	-2a-3b,3a+2b,c	b,-a	6, 6, 1	-0.523	-0.340	-0.744	-0.214	0.014	-0.496	0.053	0.160		0.536	0.616
144	3/5	-2a-3b,3a+2b,c	a+2b,b	6, 6, 1	-0.532	-0.364	-0.688	-0.205	0.000	-0.478	0.028	0.116	0.009	0.500	0.539
145	4/5	-2a-3b,3a+2b,c		6, 6, 1	-0.902	-0.719	-0.941	-0.395	-0.128	-0.500	0.095	0.188	0.227		0.930
146	5/5	-2a-3b,3a+2b,c		6, 6, 1	-1.201	-0.963	-1.067	-0.511	-0.136	-0.321	0.302	0.395	0.605	1.333	1.357
147	0/5	-3a+2b,2a-3b,c		10,10, 1	1.014	1.176	0.743	0.797	0.919	0.659	0.568	0.638	0.460	0.345	0.337
148	2/5	-3a+2b,2a-3b,c	3a-3b	10,10, 1	0.008	0.163	-0.226	0.118	0.310	-0.079	0.232	0.291	•	0.454	0.466
149	2/5	-3a+2b,2a-3b,c	-a+b	10,10, 1	-0.081	0.102	-0.302	0.043	0.241	-0.203	0.127	0.228	0.024	0.340	0.384
150	3/5	-3a+2b,2a-3b,c	-a+b,3a-3b	10,10, 1	-0.527	-0.345	-0.728	-0.240	-0.003	-0.473	0.051	0.143		0.496	0.559
151	3/5	-3a+2b,2a-3b,c	-a+b,2a-2b	10,10, 1	-0.441	-0.277	-0.619	-0.161	0.073	-0.315	0.161	0.227			·
152	5/5	-3a+2b,2a-3b,c		10,10, 1	-1.197	-0.964	-1.069	-0.514	-0.139	-0.320	0.301	0.391	0.606	1.329	1.353
153	0/6	-3a-b,-2b,c		4, 5, 1	1.011	1.190	0.744	0.797	0.898	0.659	0.556	0.640	0.457	0.352	0.333
154	2/6	-3a-b,-2b,c	-a+b	4, 5, 1	0.052	0.245	-0.218	0.120	0.307	-0.166	0.139	0.256	-0.033	0.249	0.354
155	3/6	-3a-b,-2b,c	-a-b,-2a-b	4, 5, 1	-0.322	-0.128	-0.566	-0.118	0.085	-0.418	0.033	0.152	-0.065	0.375	0.460
156	5/6	-3a-b,-2b,c		4, 5, 1	-0.961	-0.759	-0.975	-0.442	-0.151	-0.475	0.117	0.232	•	•	

Table A.1. Summary of supercell arrangements and adsorbate configurations used in formation energy calculations.

тъ#	Coverage	Supercell	Adsorbate	k-Point	E E _{frm} (eV/site)										
TD#	N_{ads}/N_{site}	Vectors	Vectors		Ru	Os	Co	Rh	Ir	Ni	Pd	Pt	Cu	Ag	Au
157	6/6	-3a-b,-2b,c		4, 5, 1	-1.199	-0.955	-1.071	-0.530	-0.150	-0.316	0.298	0.400	0.608	1.336	1.358
158	0/6	-b,ба+3b,с		10, 2, 1	1.013	1.179	0.742	0.804	0.909	0.654	0.555	0.644	0.463	0.344	0.344
159	3/6	-b,ба+3b,с	2a+b,a+b	10, 2, 1	-0.201	-0.037	-0.405	-0.020	0.194	-0.165	0.208	0.270			
160	6/6	-b,ба+3b,с		10, 2, 1	-1.200	-0.958	-1.069	-0.531	-0.154	-0.323	0.299	0.400	0.605	1.331	1.353
161	0/6	a-b,3a+3b,c		6, 3, 1	1.004	1.161	0.745	0.804	0.913	0.651	0.565	0.638	0.466	0.348	0.338
162	1/6	a-b,3a+3b,c		6, 3, 1	0.518	0.686	0.241	0.452	0.597	0.213	0.336	0.423	0.181	0.260	0.318
163	2/6	a-b,3a+3b,c	a+b	6, 3, 1	0.060	0.241	-0.216	0.135	0.313	-0.167	0.150	0.247	-0.038	0.237	0.341
164	3/6	a-b,3a+3b,c	a+b,-b	6, 3, 1	-0.309	-0.129	-0.558	-0.090	0.090	-0.413	0.054	0.148	-0.066	0.369	0.453
165	4/6	a-b,3a+3b,c	a+b,-b,a	6, 3, 1	-0.640	-0.457	-0.836	-0.279	-0.050	-0.515	0.069	0.166			0.693
166	5/б	a-b,3a+3b,c		6, 3, 1	-0.957	-0.759	-0.975	-0.418	-0.145	-0.478	0.125	0.221		•	0.999
167	6/6	a-b,3a+3b,c		6, 3, 1	-1.205	-0.956	-1.075	-0.516	-0.145	-0.321	0.300	0.397	0.605	1.326	1.359
168	0/7	-3a-b,a-2b,c		4, 4,1	1.030	1.191	0.747	0.798	0.914	0.656	0.581	0.636	0.471	0.350	0.342
169	4/7	-3a-b,a-2b,c	2a+b,a+b,b	4, 4, 1	-0.471	-0.275	-0.702	-0.195	0.032	-0.485	0.049	0.147			0.542
170	6/7	-3a-b,a-2b,c		4, 4, 1	-0.996	-0.785	-0.992	-0.444	-0.139	-0.464	0.149	0.236	0.318	•	•
171	7/7	-3a-b,a-2b,c		4, 4, 1	-1.195	-0.944	-1.069	-0.516	-0.132	-0.317	0.306	0.398	0.605	1.331	1.348
172	0/7	-a+3b,-a-4b,c		6, 6, 1	1.008	1.175	0.742	0.799	0.918	0.659	0.568	0.636	0.463	0.347	0.340
173	1/7	-a+3b,-a-4b,c		6, 6, 1	0.585	0.759	0.310	0.496	0.646	0.281	0.372	0.452	0.217	0.271	0.313
174	2/7	-a+3b,-a-4b,c	a-b	6, 6, 1	0.188	0.379	-0.104	0.213	0.393	-0.083	0.193	0.294	-0.009	0.218	0.325
175	3/7	-a+3b,-a-4b,c	a-2b,a-b	6, 6, 1	-0.169	0.028	-0.440	-0.028	0.174	-0.340	0.072	0.176	-0.107	0.273	0.383
176	4/7	-a+3b,-a-4b,c	a-2b,a-b,a	6, 6, 1	-0.480	-0.304	-0.650	-0.188	0.017	-0.453	0.031	0.118	-0.015	0.455	0.503
177	3/7	-a+3b,-a-4b,c	a-b,a+b	6, 6, 1	-0.141	0.046	-0.426	0.003	0.192	-0.327	0.088	0.185	-0.082	0.296	0.411
178	4/7	-a+3b,-a-4b,c	a-2b,a,a+b	6, 6, 1	-0.431	-0.267	-0.626	-0.153	0.069	-0.374	0.118	0.200			0.613
179	4/7	-a+3b,-a-4b,c	a-2b,a,-2b	6, 6, 1	-0.465	-0.289	-0.672	-0.168	0.019	-0.477	0.039	0.122	-0.033	0.458	0.530
180	5/7	-a+3b,-a-4b,c	a-2b,a-b,a,-2b	6, 6, 1	-0.756	-0.581	-0.847	-0.320	-0.103	-0.521	0.044	0.132	0.119	0.683	0.724
181	6/7	-a+3b,-a-4b,c		6, 6, 1	-0.995	-0.796	-0.985	-0.438	-0.147	-0.452	0.156	0.243			
182	7/7	-a+3b,-a-4b,c		6, 6, 1	-1.202	-0.962	-1.062	-0.509	-0.134	-0.311	0.311	0.400	0.612	1.333	1.351
183	0/8	-3a+b,a-3b,c		5, 5, 1	1.013	1.185	0.746	0.801	0.912	0.652	0.572	0.631	0.471	0.361	0.347
184	2/8	-3a+b,a-3b,c	b	5, 5, 1	0.297	0.476	0.021	0.291	0.459	0.033	0.248	0.334	0.085	0.265	0.339
185	4/8	-3a+b,a-3b,c	3a-2b,2a-b,a-b	5, 5, 1	-0.326	-0.132	-0.561	-0.122	0.084	-0.416	0.038	0.138	-0.072	0.359	0.447
186	8/8	-3a+b,a-3b,c		5, 5, 1	-1.198	-0.962	-1.065	-0.517	-0.146	-0.319	0.305	0.397	0.605	1.327	1.353
187	0/8	-3a-2b,a-2b,c		4, 4, 1	1.013	1.199	0.746	0.792	0.902	0.657	0.573	0.642	0.463	0.352	0.342
188	4/8	-3a-2b,a-2b,c	2a+3b,a+3b,a+2b	4, 4, 1	-0.306	-0.110	-0.605	-0.115	0.091	-0.449	0.059	0.169	•		0.479
189	8/8	-3a-2b,a-2b,c		4, 4, 1	-1.200	-0.954	-1.066	-0.520	-0.141	-0.319	0.302	0.397	0.603	1.330	1.354
190	0/8	a-b,4a+4b,c		6, 3, 1	1.008	1.179	0.745	0.806	0.914	0.651	0.565	0.638	0.465	0.349	0.338
191	1/8	a-b,4a+4b,c		6, 3, 1	0.638	0.812	0.367	0.538	0.674	0.323	0.390	0.473	0.251	0.280	0.317
192	4/8	a-b,4a+4b,c	a+b,a+2b,2a+3b	6, 3, 1	-0.299	-0.120	-0.544	-0.085	0.101	-0.404	0.057	0.149	-0.070	0.361	0.458
193	5/8	a-b,4a+4b,c	a+b,a+2b,2a+3b,-a-b	6, 3, 1	-0.576	-0.409	-0.724	-0.226	-0.038	-0.499	0.024	0.107	0.016	0.517	0.552
194	7/8	a-b,4a+4b,c		6, 3, 1	-1.020	-0.816	-1.000	-0.450	-0.153	-0.444	0.165	0.260			•
195	8/8	a-b,4a+4b,c		6, 3, 1	-1.198	-0.953	-1.067	-0.517	-0.143	-0.320	0.300	0.397	0.604	1.328	1.358

Table A.1 (cont.). Summary of supercell arrangements and adsorbate configurations used in formation energy calculations.

Supercell geometries and coverages with more than one possible adsorbate arrangement indicate the relationships between initial and subsequent adsorbates (e.g., for configuration 143: the vector between the 1st and 2nd adsorbate is b; the vector between the 1st and 3rd adsorbate is -a). All k-point meshes are Γ -centered.

a =
$$(1,0,0)$$
 b = $\left(-\frac{1}{2},\frac{\sqrt{3}}{2},0\right)$ c = $\left(0,0,\frac{20\sqrt{6}}{3}\right)$