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General Procedure for the Catalytic Reactions of Hydrosilylation of CO, with
1,1,1,3,5,5,5-heptamethyltrisiloxane (HMTYS) using the complex
[IrH(CF;S0;3)(NSiN)(coe)] (3) as catalysts precursor.

A 25 mL batch reactor with Teflon lining inside was charged with dry HMTS (3
mL, 11.04 mmol). Then the reactor was closed, purged with CO, gas few times and
heated to the corresponding temperature. After stabilization to the particular
temperature, the reactor was opened under argon atmosphere and the iridium catalyst 3
(75 mg, 0.11 mmol), which was weighed in a glove box, was added. After closing the
reactor, the mixture was again purged few times using vacuum and CO, gas. Then the
pressure of CO, gas was adjusted to 3 bars. Liquid samples were taken periodically after
releasing the CO, pressure, without opening the reactor, using a long needle through
sample withdrawal valve. The reactor was purged with vacuum and CO, several times
after each sample withdrawal and the CO, pressure was returned back to 3 bars using
CO,. The samples were diluted using 0.5 ml of anhydrous tetrahydrofuran and analyzed
by quantifiable GC-MS. The product yield was obtained by comparison of the integral
of the area corresponding to the peaks assigned to the reaction products with the integral

of the peak corresponding to the starting material HMTS.
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Examples of GC-MS spectra from reaction samples:
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Figure S1. GC spectrum of a sample of the catalytic hydrosilylation of CO, with HMTS
at 25°C at the beginnig of the reactions. A major peak of HMTS (at 4.36 min) and traces

of cyclooctane (at 5.70 min) were observed.
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Figure S2. Peak corresponding to the starting HTMS in the GC-MS spectrum of a

sample of the catalytic hydrosilylation of CO, with HMTS at 25°C at the beginning of

the reaction.
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Figure S3. Peak corresponding to cyclooctane in the GC-MS spectrum of a sample of

the catalytic hydrosilylation of CO, with HMTS at 25°C at the beginning of the

reaction.
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Figure S4. GC-MS spectrum of a sample of the catalytic hydrosilylation of CO, with

HMTS at 25°C at the end of the reaction. The main peak at 7.74 min corresponds to

silyl formate and the minor peak at 14.02 min is due to {(Me;SiO),MeSi},0.
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Figure S5. Peak corresponding to silyl formate in the GC-MS spectrum of a sample of

the catalytic hydrosilylation of CO, with HMTS at 25°C at the end of the reaction.
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Figure S6. Peak corresponding to {(Me3;SiO),MeSi},0 in the GC-MS spectrum of a
sample of the catalytic hydrosilylation of CO, with HMTS at 25°C at the end of the

reaction.
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Figure S7: 'TH NMR (300 MHz, CD,Cl,) of the product of the reaction of CO, (3 bar)

with HTMS after 3 days at 25 °C using 3 (1.0 mol %) as catalyst precursor.
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Figure S8: °Si{!H} NMR (79.5 MHz, CD,Cl,) spectra of samples taken from the

reaction of CO; (3 bar) at 25 °C using 3 (1.0 mol %) as catalyst precursor.
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Reactions in a Young NMR tube.

A Young NMR tube was charged with (Me;Si0),MeSiH (79 uL, 0.30 mmol), complex
3 (23 mg, 0.03 mmol), CD,Cl, (0.35 mL) and CD;CN (0.15 mL). The reaction was

monitored by '"H NMR at 295 K.

Figure S9: '"H NMR (300 MHz, CD,Cl,) of the reation of complex 3 with 10

equivalents of HMTS in a mixture of CD,Cl, and CD;CN after 4 hours of reaction at r.t.
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Table S1: Data obtained from the GC-MS studies of the reaction of CO, with HTMS
using 3 (1.0 mol %) as catalyst precursor at different temperatures. Time is expressed in
hours and concentration of HMTS, silylformate and (R,MeSi),O (R = (OSiMes)) are

expressed in %.

Room Temperature: 25 C
Time | HMTS | Silylformate (R,MeSi),0
12 99,4 0,6 0,0
24 97,7 1,5 0,8
36 88,2 9,9 1,9
48 56,9 37,8 5,3
60 23,2 70,4 6,4
72 6,8 83,8 9,4
80 1,8 88,3 9,4
Temperature: 35 C
8 98,9 0,8 0,3
17 89,2 9,1 1,8
24 55,8 40,0 4,2
32 11,8 82,4 5,8
41 1,4 91,1 7,5
Temperature: 45 C
3 99,5 0,5 0,0
7 95,4 34 1,2
11 56,9 39,3 3.8
14 22,3 71,5 6,2
23 0,9 91,1 8,0
Temperature: 55 C
2 96,8 2,1 1,0
4 50,3 448 4,9
6 13,5 79,5 6,9
8 3.2 89,7 7,1
9 1,5 87,2 11,3
Temperature: 65 C
1 71,4 25,8 2,9
2 32,2 60,7 7,2
3 17,7 78,0 43
4 9,2 85,8 5,1
5 4,9 85.8 9.3
Temperature: 75 C
0,5 58,7 39,9 1.4
1 27,5 69,4 3,1
1,5 17,8 79,3 2,9
2 10,4 83,1 6,5
2,5 4,6 90,2 5,2
3 2,3 87,1 10,5
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Reaction kinetic model for the CO, hydrosilation shown in Scheme S1:

K.
HSiMeR, + co, ——> HJ\O/SiMeR2

(3.0 mL) (3.0 bar)

Catalyst 1.0 mol %
R = OSiMes3

Scheme S1. Catalytic CO, hydrosilylation with HMTS using 3 as catalyst precursor.

The following first order differential equations represent the model equations that were
derived based on the above scheme.
The rate of the disapperance of HMTS is
vV dC
W, % = (k,Csy) (1)
The rate of formation of formate:

V dCp
W, dt

= (kiCsx) )

Where Cy,, Cr are the molar concentration of HMTS and silyl formate in the system, V
is the volume of the reactor, W, is the weight of the catalyst, t is the time in hours and &;
is the rate constant at the temperature T;.

The molar concentration C, can be expressed in term of weight fraction y;, of every
species in the system, which is the measurable variable from the chromatographic

analysis, hence:

c, =L
- /
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Where W, is the weight of feed used in the reactor, MW; is the molecular weight of the
corresponding species i.

The reaction rate constants are related to temperature through Arrhenius equation:

“

Were £; is the rate constant at the average temperature 7; and E, the apparent activation

energy of the reaction.

The model equations (equations 1-4) were evaluated by a least square fitting of the
kinetic parameters using the experimental data for the reaction of HMTS with CO,. The
experimental conversion data points were taken at various reaction times and at
different temperature levels ranging from 23 °C to 75 °C. The differential equation was
solved by Runge-Kutta method (MATLAB ODE 45 subroutine).! The activation energy
and the Arrhenius pre-exponential factor were estimated using the Modified Marquad
method technique (MATLAB LSQCURVEFIT subroutine). The optimization criteria
for the model evaluation are that all the activation energy and the rate constant had to be

positive, all consistent with physical principles.?
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