Infrared Spectroscopic Study of Dimethyl Ether

Carbonylation Catalysed by TiO₂-Supported Rhodium

Carbonyls.

Gerardo A. Flores-Escamilla and Juan C. Fierro-Gonzalez*

Departamento de Ingeniería Química,

Instituto Tecnológico de Celaya,

Celaya, Guanajuato, Mexico 38010.

^{*} Corresponding author. Tel.: +52 4616117575; fax: +52 4616117744. *E-mail address*: jcfierro@iqcelaya.itc.mx (J. C. Fierro-Gonzalez)

Figure 1S. IR spectra at the v_{OD} region characterizing the bare TiO₂ support as it was treated in a flowing mixture of He and D₂O vapours at room temperature for 120 min.

Figure 2S. v_{CO} spectra characterizing the TiO₂-supported Rh sample as it was treated (a) in flowing He, (b) in a flowing mixture of DME and He and (c) in flowing He after DME adsorption at room temperature.

Figure 3S. Mass spectral signals of the effluent gases from flow reactor DRIFT/cell as the bare TiO₂ was exposed to the flowing mixture of CO/DME/CH₃I/He at increasing temperature. (•) CO (m/e =28), (•) DME (m/e = 46), (Δ) methyl acetate (m/e = 74) and (\blacksquare) water.

Figure 4S. IR subtraction spectra as a function of temperature characterizing the bare TiO_2 as it was treated in the flowing reactive mixture of DME/CO/CH₃I/He.