Supporting Materials

Heterogeneously Biomimetic Aerobic Synthesis of

3-Iodoimidazo[1,2-*a*]pyridines via CuO_x/OMS-2-catalyzed Tandem

Cyclization/iodination and Their Late-stage Functionalization

Xu Meng, Chaoying Yu, Gexin Chen and Peiqing Zhao*

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R China. Fax:+96 931 8277008;Tel: +86 931 4968688; E-mail: <u>zhaopg@licp.cas.cn</u>

Table of Contents

General information and procedure	S2-S6
Characterization of catalyst	S 3
Spectrum data of products	-S7-S18
Copy of ¹ H NMR and ¹³ C NMR spectra for products	S19-S45

Experimental

All reagents were purchased from commercial suppliers and used without further purification. Metal salts and catalyst supports were commercially available and were used directly. All experiments were carried out under air. Flash chromatography was carried out with Merck silica gel 60 (200-300 mesh). Analytical TLC was performed with Merck silica gel 60 F254 plates, and the products were visualized by UV detection. ¹H NMR and ¹³C NMR (400 and 100 MHz respectively) spectra were recorded in CDCl₃. Chemical shifts (δ) are reported in ppm using TMS as internal standard, and spin-spin coupling constants (*J*) are given in Hz. All heterogeneous catalysts are synthesized by wet impregnation in deionized water and Cu(OH)_x/OMS-2 is made by deposition-precipitation in water.

Preparation of OMS-2^[1]

5.89g of KMnO₄ in 100 mL of deionized water was added to a solution of 8.8g of MnSO₄-H₂O in 30 mL of deionized water and 3 mL concentrated HNO₃. The solution was refluxed at 100 °C for 24 h, and the product was filtered, washed, and dried at 120 °C for 8 hours. Finally, the dry OMS-2 was calcined in a muffle furnace at 350 °C for 2 hours. Then, the black powder OMS-2 was obtained.

BET surface area: $158.4870 \text{ m}^2/\text{g}$

Pore volume (BJH Adsorption): $0.5249 \text{ cm}^3/\text{g}$

Pore size (BJH Adsorption): 127.058 Å

Preparation of CuO_x/OMS-2

Support OMS-2 (2g) was added to a 50 mL round-bottom flask. A solution of Cu(NO₃)₂-3H₂O (0.15g) in deionized water (10 mL) was added to OMS-2, and additional deionized water (10 mL) was added to wash down the sides of the flask. Then the flask was submerged into an ultrasound bath for 3h at room temperature and stirred for further 20h at room temperature. After that, the water was distilled under reduced pressure on a rotary evaporator at 80 °C for more than 2h. Finally, the black powder was dried into an oven at 110 °C for 4hour followed by calcination at 350 °C for 2hours. The Inductive Coupled Plasma Optical Emission Spectrum (ICP-OES) showed Cu content is 1.31 wt%. BET surface area: 127.0775 m²/g Pore volume (BJH Adsorption): $0.4751 \text{ cm}^3/\text{g}$

Pore size (BJH Adsorption): 13.7224 nm

General procedure for CuO_x/OMS-2-catalyzed cyclization/iodination tandem reaction

CuO_x/OMS-2 (6 mg, 0.2 mol%), 2-aminopyridine (0.6 mmol), acetophenone (0.5 mmol), I_2 (0.25 mmol) and DCB (1 mL) were added to a flask with a bar. The flask was stirred at 100 °C for 20h under air. After

cooling to room temperature, the mixture was diluted with ethyl acetate and filtered. The filtrate was removed under reduced pressure to get the crude product, which was further purified by silica gel chromatography (petroleum/ethyl acetate = 4/1 as eluent) to yield corresponding product. The identity and purity of the products was confirmed by ¹H and ¹³C NMR spectroscopic analysis. HRMS were provided for all new compounds.

Synthesis of 4 via Suzuki Reaction^[7]

Pd(OAc)₂ (10 mol%), xanphos (20 mol%), K₃PO₄ (2.0 equiv.), 3a (0.5 mmol), phenylboronic acid (0.75 mmol) and toluene (2 mL) were added to a sealed tube. The tube was stirred at 120 °C for 20h under N₂. After cooling to room temperature, the mixture was diluted with ethyl acetate and filtered. The filtrate was removed under reduced pressure to get the crude product, which was further purified by silica gel chromatography (petroleum/ethyl acetate = 4/1 as eluent) to yield corresponding product. The identity and purity of the products was confirmed by ¹H and ¹³C NMR spectroscopic analysis.

Synthesis of 4 via direct coupling^[8]

Pd(OAc)₂ (5 mol%), CuI (10 mol%), PPh3 (10 mol%), NaOtBu (2.0 equiv.), 3a (0.5 mmol), benzene (5.0 equiv.) and 1,4-dioxane (2 mL) were

added to a sealed tube. The tube was stirred at 110 °C for 20h under N₂. After cooling to room temperature, the mixture was diluted with ethyl acetate and filtered. The filtrate was removed under reduced pressure to get the crude product, which was further purified by silica gel chromatography (petroleum/ethyl acetate = 4/1 as eluent) to yield corresponding product. The identity and purity of the products was confirmed by ¹H and ¹³C NMR spectroscopic analysis.

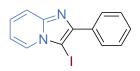
Synthesis of 5^[9]

AgNO₃(10 mol%), N,N-DMEDA (10 mol%), KOtBu (2.0 equiv.), 3a (0.6 mmol), 2-aminopyridine (0.5 mmol) and DMSO (2 mL) were added to a sealed tube. The tube was stirred at 160 °C for 24h under N₂. After cooling to room temperature, the mixture was diluted with ethyl acetate and filtered. The filtrate was removed under reduced pressure to get the crude product, which was further purified by silica gel chromatography (petroleum/ethyl acetate = 3/2 as eluent) to yield corresponding product. The identity and purity of the products was confirmed by ¹H and ¹³C NMR spectroscopic analysis.

Synthesis of 6^[10]

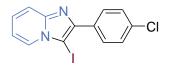
 $PdCl_2$ (10 mol%), CuI (20 mol%), PPh_3 (20 mol%), 3a (0.5 mmol), phenylacetyleen (1.25 mmol) and EtN_3 (2 mL) were added to a sealed

5

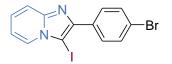

tube. The tube was stirred at 60 °C for 12h under N₂. After cooling to room temperature, the mixture was diluted with ethyl acetate and filtered. The filtrate was removed under reduced pressure to get the crude product, which was further purified by silica gel chromatography (petroleum/ethyl acetate = 4/1 as eluent) to yield corresponding product. The identity and purity of the products was confirmed by ¹H and ¹³C NMR spectroscopic and HRMS analysis.

Synthesis of 7^[11]

Pd(OAc)₂ (5 mol%), Nixantphos (10 mol%), KN(SiMe₃)₂ (3.0 equiv.), 3a (0.5 mmol), toluene (1.5 mmol) and 1,4-dixoane (2 mL) were added to a sealed tube. The tube was stirred at 110 °C for 24h under N₂. After cooling to room temperature, the mixture was diluted with ethyl acetate and filtered. The filtrate was removed under reduced pressure to get the crude product, which was further purified by silica gel chromatography (petroleum/ethyl acetate = 4/1 as eluent) to yield corresponding product. The identity and purity of the products was confirmed by ¹H and ¹³C NMR spectroscopic analysis.

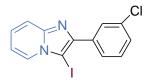

Spectrum data of the products

3-iodo-2-phenylH-imidazo[1,2-a]pyridine (3a)^[2]

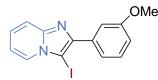

White solid, isolated yield 93%.¹H NMR (400MHz, CDCl₃): $\delta = 8.18$ (d, 1H, J = 6.9 Hz), 7.07(d, 2H, J = 7.3 Hz), 7.60(d, 1H, J = 9.0 Hz), 7.48(t, 2H, J = 7.6 Hz), 7.40(t, 1H, J = 7.4 Hz), 7.28-7.24(m, 1H), 6.88(t, 1H, J =6.8 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 148.1$, 148.0, 133.6, 128.6, 128.4, 128.3, 126.6, 125.6, 117.6, 113.2, 59.6.

2-(4-chlorophenyl)-3-iodoH-imidazo[1,2-a]pyridine (3b)

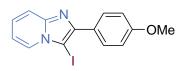
White solid, isolated yield 82%.¹H NMR (400MHz, CDCl₃): $\delta = 8.19$ (d, 1H, J = 6.8 Hz), 8.00(d, 2H, J = 8.4 Hz), 7.58(d, 1H, J = 9.2 Hz), 7.44-7.42(m, 2H), 7.24(t, 1H, J = 7.4 Hz), 6.91(t, 1H, J = 6.4 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 148.1$, 146.9, 134.3, 132.1, 129.7, 128.6, 126.5, 125.8, 117.6, 113.3, 59.5. HRMS (ESI) m/z: Found: 354.9482. Calcd for C₁₃H₈CIIN₂: (M+H)⁺ 354.9493.


2-(4-bromophenyl)-3-iodoH-imidazo[1,2-a]pyridine (3c)

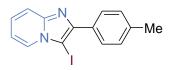
White solid, isolated yield 90%.¹H NMR (400MHz, CDCl₃): $\delta = 8.19$ (d,


1H, J = 6.8 Hz), 7.96(d, 2H, J = 8.8 Hz), 7.60(d, 3H, J = 8.8 Hz), 7.26(t, 1H, J = 1.2 Hz), 6.92(t, 1H, J = 5.2 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 148.1$, 146.9, 132.5, 131.5, 129.6, 126.5, 125.8, 122.5, 117.6, 113.3, 59.5. HRMS (ESI) m/z: Found: 398.8997. Calcd for C₁₃H₈BrIN₂: (M+H)⁺ 398.8988.

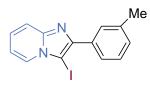
2-(3-chlorophenyl)-3-iodoH-imidazo[1,2-a]pyridine (3d)


Pale yellow solid, isolated yield 89%.¹H NMR (400MHz, *d*-DMSO): δ = 8.41(d, 1H, *J* = 6.8 Hz), 8.15(s, 1H), 8.04(d, 1H, *J* = 6.8 Hz), 7.59(d, 2H, *J* = 3.6 Hz), 7.10(m, 2H), 6.96(m, 1H); ¹³C NMR (100MHz, *d*-DMSO): δ = 148.5, 144.0, 138.8, 137.6, 136.2, 134.9, 134.4, 133.4, 132.4, 122.3, 118.9, 74.9. HRMS (ESI) m/z: Found: 354.9484. Calcd for C₁₃H₈ClIN₂: (M+H)⁺ 354.9493.

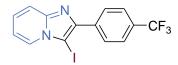
3-iodo-2-(3-methoxyphenyl)H-imidazo[1,2-a]pyridine (3e)


Pale yellow oil, isolated yield 73%.¹H NMR (400MHz, CDCl₃): δ = 8.16(d, 1H, *J* = 7.2 Hz), 7.66-7.57(m, 3H), 7.37(t, 1H, *J* = 8.0 Hz), 7.20(t, 1H, *J* = 6.8 Hz), 6.94(q, 1H, *J* = 1.2 Hz), 6.92-6.84(m, 1H), 3.87(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ = 159.4, 147.9, 147.7, 134.7, 129.3, 126.4, 125.5, 120.9, 117.4, 114.5, 113.4, 113.1, 55.3. HRMS (ESI) m/z: Found: 350.9987. Calcd for $C_{14}H_{11}IN_2O$: $(M+H)^+$ 350.9989.

3-iodo-2-(4-methoxyphenyl)H-imidazo[1,2-a]pyridine (3f)

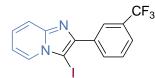

White solid, isolated yield 82%.¹H NMR (400MHz, CDCl₃): $\delta = 8.19$ (d, 1H, J = 7.6 Hz), 8.03-7.99(m, 2H), 7.58(d, 1H, J = 8.8 Hz), 7.26-7.21(m, 1H), 7.03(t, 2H, J = 2.8 Hz), 6.97(t, 1H, J = 6.8 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 159.7$, 148.0, 147.9, 129.7, 126.6, 126.1, 125.3, 117.4, 113.8, 112.9, 58.6, 55.3. HRMS (ESI) m/z: Found: 350.9987. Calcd for C₁₄H₁₁IN₂O: (M+H)⁺ 350.9989.

3-iodo-2-p-tolylH-imidazo[1,2-a]pyridine (3g)



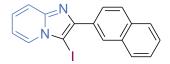
White solid, isolated yield 58%.¹H NMR (400MHz, CDCl₃): $\delta = 8.21$ (d, 1H, J = 6.8 Hz), 7.96(d, 2H, J = 8.0 Hz), 7.60(d, 1H, J = 8.8 Hz), 7.29(d, 2H, J = 8.0 Hz), 7.25(d, 1H, J = 7.2 Hz), 6.90(t, 1H, J = 6.4 Hz) 2.42(s, 3H); ¹³C NMR (100MHz, CDCl₃): $\delta = 148.1$, 138.2, 130.7, 129.4, 129.1, 128.4, 127.1, 126.4, 125.4, 117.5, 113.0, 58.1, 21.3. HRMS (ESI) m/z: Found: 335.0049. Calcd for C₁₄H₁₁IN₂: (M+H)⁺ 335.0040.

3-iodo-2-m-tolylH-imidazo[1,2-a]pyridine (3h)

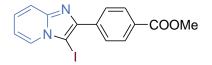


White solid, isolated yield 55%.¹H NMR (400MHz, CDCl₃): $\delta = 8.19$ (d, 1H, J = 6.8 Hz), 7.87(d, 2H, J = 6.4 Hz), 7.60(d, 1H, J = 9.2 Hz), 7.45(d, 1H, J = 7.2 Hz), 7.22-7.20(m, 2H), 6.89(t, 1H, J = 6.0 Hz), 2.44(s, 3H); ¹³C NMR (100MHz, CDCl₃): $\delta = 148.1$, 147.9, 138.0, 133.6, 129.2, 129.0, 128.1, 126.4, 125.5, 117.5, 113.0, 59.6, 21.4. HRMS (ESI) m/z: Found: 335.0041. Calcd for C₁₄H₁₁IN₂: (M+H)⁺ 335.0040.

Yellow solid, isolated yield 88%.¹H NMR (400MHz, CDCl₃): $\delta = 8.52$ (d, 2H, J = 8.0 Hz), 7.99(d, 2H, J = 8.0 Hz), 7.59(d, 1H, J = 8.8 Hz), 7.49(d, 1H, J = 8.0 Hz), 7.26(t, 1H, J = 6.4 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 148.2$, 146.5, 137.1, 130.2, 129.9, 128.6, 126.0, 125.4, 125.3, 125.2, 125.1, 117.8, 113.5, 60.1. HRMS (ESI) m/z: Found: 388.9765. Calcd for C₁₄H₈F₃IN₂: (M+H)⁺ 388.9757.


3-iodo-2-(3-(trifluoromethyl)phenyl)H-imidazo[1,2-a]pyridine (3j)

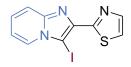
Pale yellow solid, isolated yield 85%.¹H NMR (400MHz, CDCl₃): δ = 8.31(s, 1H), 8.28-8.22(m, 2H), 7.64-7.62(m, 3H), 7.29-7.26(m, 1H), 6.96(t, 1H, J = 6.8 Hz); ¹³C NMR (100MHz, CDCl₃): δ = 148.3, 146.5, 134.4, 131.5, 130.9, 130.6, 128.8, 126.6, 125.9, 125.3, 124.9, 124.8,


117.7, 113.5, 59.8. HRMS (ESI) m/z: Found: 388.9766. Calcd for $C_{14}H_8F_3IN_2$: (M+H)⁺ 388.9757

3-iodo-2-(naphthalen-2-yl)H-imidazo[1,2-a]pyridine (3k)^[3]

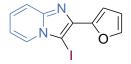
White solid, isolated yield 86%.¹H NMR (400MHz, CDCl₃): $\delta = 8.56$ (s, 1H), 8.20(t, 2H, J = 6.0 Hz), 7.94(d, 2H, J = 8.0 Hz), 7.81(d, 1H, J = 6.8 Hz), 7.64(d, 1H, J = 9.2 Hz), 7.49(d, 2H, J = 6.0 Hz), 7.24(t, 1H, J = 6.8 Hz), 6.89(t, 1H, J = 6.8 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 148.2$, 147.9, 133.2, 133.1, 130.9, 128.4, 127.9, 127.7, 127.6, 126.5, 126.3, 126.2, 126.1, 125.6, 117.5, 113.2, 59.8.

methyl 4-(3-iodoH-imidazo[1,2-a]pyridin-2-yl)benzoate (3l)



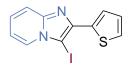
White solid, isolated yield 38%.¹H NMR (400MHz, CDCl₃): $\delta = 8.25$ (d, 1H, J = 6.8 Hz), 8.66(m, 3H), 7.64(d, 1H, J = 8.8 Hz), 7.31-7.30(m, 1H), 6.96(t, 1H, J = 6.8 Hz), 3.95(s, 3H); ¹³C NMR (100MHz, CDCl₃): $\delta = 166.9$, 148.3, 146.9, 138.0, 129.7, 128.3, 127.3, 126.6, 125.9, 117.8, 113.5, 60.3, 52.1. HRMS (ESI) m/z: Found: 378.9952. Calcd for C₁₅H₁₁IN₂O₂: (M+H)⁺ 378.9983.

4-(3-iodoH-imidazo[1,2-a]pyridin-2-yl)benzonitrile (3m)


White solid, isolated yield 44%.¹H NMR (400MHz, CDCl₃): $\delta = 8.26-8.23$ (m, 3H), 7.76(d, 2H, J = 8.8 Hz), 7.63(d, 1H, J = 9.2 Hz), 7.32(t, 1H, J = 6.8 Hz), 6.98(t, 1H, J = 6.8 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 148.3$, 145.8, 138.1, 132.2, 128.8, 126.4, 126.3, 118.8, 117.9, 113.7, 111.6, 60.5. HRMS (ESI) m/z: Found: 345.9868. Calcd for C₁₄H₈IN₃: (M+H)⁺ 345.9876.

3-iodo-2-(thiazol-2-yl)H-imidazo[1,2-a]pyridine (3n)

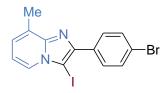
White solid, isolated yield 59%.¹H NMR (400MHz, CDCl₃): $\delta = 8.28$ (d, 1H, J = 7.2 Hz), 8.00(d, 1H, J = 3.6 Hz), 7.64(d, 1H, J = 9.2 Hz), 7.43(d, 1H, J = 3.2 Hz), 7.31(t, 1H, J = 6.8 Hz), 6.98(t, 1H, J = 6.8 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 162.4$, 151.4, 147.8, 143.8, 141.9, 126.5, 119.9, 117.9, 113.9, 59.9. HRMS (ESI) m/z: Found: 327.9356. Calcd for C₁₄H₆IN₃S: (M+H)⁺ 327.9348.


2-(furan-2-yl)-3-iodoH-imidazo[1,2-a]pyridine (30)

White solid, isolated yield 61%.¹H NMR (400MHz, CDCl₃): $\delta = 8.19$ (d, 1H, J = 6.8 Hz), 7.62-7.58(m, 2H), 7.26(t, 1H, J = 6.8 Hz), 7.18-7.17(m,

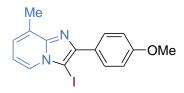

1H), 6.90(t, 1H, J = 7.2 Hz), 6.56(q, 1H, J = 3.2 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 148.1$, 147.9, 142.8, 140.7, 126.3, 125.9, 117.5, 113.4, 111.7, 111.4, 108.9, 57.8. HRMS (ESI) m/z: Found: 310.9688. Calcd for C₁₁H₇IN₂O: (M+H)⁺ 310.9694.

3-iodo-2-(thiophen-2-yl)H-imidazo[1,2-a]pyridine (3p)



White solid, isolated yield 78%.¹H NMR (400MHz, CDCl₃): $\delta = 8.21-8.19(m, 1H)$, 7.96-7.94(m, 1H), 7.59-7.57(m, 1H), 7.37(d, 1H, J = 7.2 Hz), 7.28-7.26(m, 1H), 7.23(t, 1H, J = 6.8 Hz), 6.90(t, 1H, J = 6.8 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 147.8$, 137.5, 127.6, 127.1, 126.4, 126.3, 126.1, 126.7, 117.4, 113.4, 58.5. HRMS (ESI) m/z: Found: 326.9449. Calcd for C₁₁H₇IN₂S: (M+H)⁺ 326.9437.

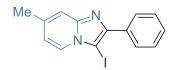
3-iodo-8-methyl-2-phenylH-imidazo[1,2-a]pyridine (3q)



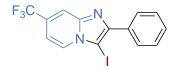
White solid, isolated yield 97%.¹H NMR (400MHz, CDCl₃): $\delta = 8.09$ (d, 1H, J = 6.8 Hz), 8.05(d, 2H, J = 6.8 Hz), 7.48(m, 2H), 7.39(t, 1H, J = 7.2Hz), 7.05(d, 1H, J = 6.8 Hz), 6.84(t, 1H, J = 6.8 Hz), 2.68(s, 3H); ¹³C NMR (100MHz, CDCl₃): $\delta = 148.5$, 147.6, 133.9, 128.7, 128.3, 128.1, 127.6, 124.4, 124.2, 112.9, 59.9, 16.6. HRMS (ESI) m/z: Found: 335.0048. Calcd for C₁₄H₁₁IN₂: (M+H)⁺ 335.0040. 2-(4-bromophenyl)-3-iodo-8-methylH-imidazo[1,2-a]pyridine (3r)

White solid, isolated yield 98%.¹H NMR (400MHz, CDCl₃): $\delta = 8.06$ (d, 1H, J = 6.8 Hz), 7.95(d, 2H, J = 8.8 Hz), 7.59(d, 2H, J = 8.4 Hz), 7.04(d, 1H, J = 4.0 Hz), 6.83(t, 1H, J = 7.2 Hz), 2.65(s, 3H); ¹³C NMR (100MHz, CDCl₃): $\delta = 148.5$, 146.4, 132.8, 131.4, 130.1, 127.7, 124.4, 124.3, 122.4, 113.2, 59.8, 16.5. HRMS (ESI) m/z: Found: 412.9157. Calcd for C₁₄H₁₀BrIN₂: (M+H)⁺ 412.9156.

3-iodo-2-(4-methoxyphenyl)-8-methylH-imidazo[1,2-a]pyridine (3s)

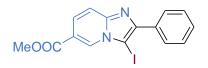

White solid, isolated yield 98%.¹H NMR (400MHz, CDCl₃): $\delta = 8.07$ (d, 1H, J = 6.8 Hz), 7.99(d, 2H, J = 6.4 Hz), 7.02(t, 3H, J = 7.6 Hz), 6.81(t, 1H, J = 6.8 Hz), 3.87(s, 3H), 2.66(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ = 159.6, 148.4, 147.5, 129.9, 127.4, 126.4, 124.3, 124.1, 113.8, 112.8, 59.1, 55.3, 16.5. HRMS (ESI) m/z: Found: 365.0137. Calcd for C₁₅H₁₃IN₂O: (M+H)⁺ 365.0145.

3-iodo-8-methyl-2-(4-(methylsulfonyl)phenyl)H-imidazo[1,2-a]pyridi ne (3t)

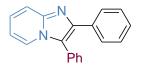

White solid, isolated yield 58%.¹H NMR (400MHz, CDCl₃): $\delta = 8.29$ (d, 2H, J = 6.8 Hz), 8.08(d, 1H, J = 6.8 Hz), 8.02(d, 2H, J = 6.8 Hz), 7.07(t, 1H, J = 4.4), 6.87(t, 1H, J = 6.8 Hz), 3.01(s, 3H), 2.65(s, 3H); ¹³C NMR (100MHz, CDCl₃): $\delta = 148.6$, 145.3, 139.5, 139.4, 129.2, 127.9, 127.4, 124.8, 124.5, 113.6, 60.9, 44.6, 16.4. HRMS (ESI) m/z: Found: 412.9757. Calcd for C₁₅H₁₃IN₂O₂S: (M+H)⁺412.9762.

3-iodo-7-methyl-2-phenylH-imidazo[1,2-a]pyridine (3u)

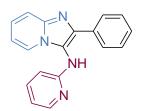
White solid, isolated yield 83%.¹H NMR (400MHz, CDCl₃): δ 8.10(d, 1H, J = 7.2 Hz), 8.05(d, 2H, J = 7.2 Hz), 7.49-7.46(m, 2H), 7.40-7.38(m, 2H), 7.63(d, 1H, J = 7.2 Hz), 2.46(s, 3H); ¹³C NMR (100MHz, CDCl₃): $\delta =$ 148.5, 136.7, 133.7, 128.5, 128.3, `18.2, 127.2, 125.7, 116.1, 115.8, 58.5, 21.3. HRMS (ESI) m/z: Found: 335.0049. Calcd for C₁₄H₁₁IN₂: (M+H)⁺ 335.0040.


3-iodo-2-phenyl-7-(trifluoromethyl)H-imidazo[1,2-a]pyridine (3v)

Yellow solid, isolated yield 56%.¹H NMR (400MHz, CDCl₃): $\delta = 8.59$ (s, 1H), 8.06(d, 2H, J = 7.2 Hz), 7.72(d, 1H, J = 9.6 Hz), 7.52(t, 2H, J = 5.6

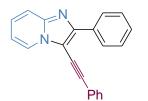

Hz), 7.44(t, 2H, J = 6.4 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 149.9$, 147.9, 132.8, 128.9, 128.5, 128.5, 125.6, 125.5, 124.7, 122.0, 121.5, 121.4, 118.3, 117.8, 117.5, 61.4. HRMS (ESI) m/z: Found: 388.9765. Calcd for C₁₄H₈F₃IN₂: (M+H)⁺ 388.9757.

Methyl 3-iodo-2-phenylH-imidazo[1,2-a]pyridine-6-carboxylate (3w)

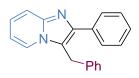


White solid, isolated yield 40%.¹H NMR (400MHz, CDCl₃): $\delta = 8.98$ (s, 1H), 8.07(d, 2H, J = 7.2 Hz), 7.81(d, 1H, J = 7.6 Hz), 7.63(d, 1H, J = 7.2 Hz), 7.49(d, 2H, J = 6.8 Hz), 7.43(d, 1H, J = 7.6 Hz), 3.99(s, 3H); ¹³C NMR (100MHz, CDCl₃): $\delta = 165.1$, 149.8, 148.7, 132.9, 130.6, 128.8, 128.5, 128.4, 125.3, 117.2, 116.9, 60.9, 52.6. HRMS (ESI) m/z: Found: 378.9952. Calcd for C₁₅H₁₁IN₂O₂: (M+H)⁺ 378.9983.

2,3-diphenylH-imidazo[1,2-a]pyridine (4)^[4]



White solid, isolated yield 85%.¹H NMR (400MHz, CDCl₃): δ = 7.98(d, 1H, J = 6.8 Hz), 7.73-7.67(m, 3H), 7.57-7.54(m, 3H), 7.53-7.46(m, 3H), 7.32-7.20(m, 3H), 6.78(t, 1H, J = 6.8 Hz); ¹³C NMR (100MHz, CDCl₃): δ = 144.6, 141.7, 133.1, 130.7, 130.0, 129.5, 129.0, 128.4, 128.3, 128.2, 125.4, 123.2, 121.1, 117.3, 112.7.

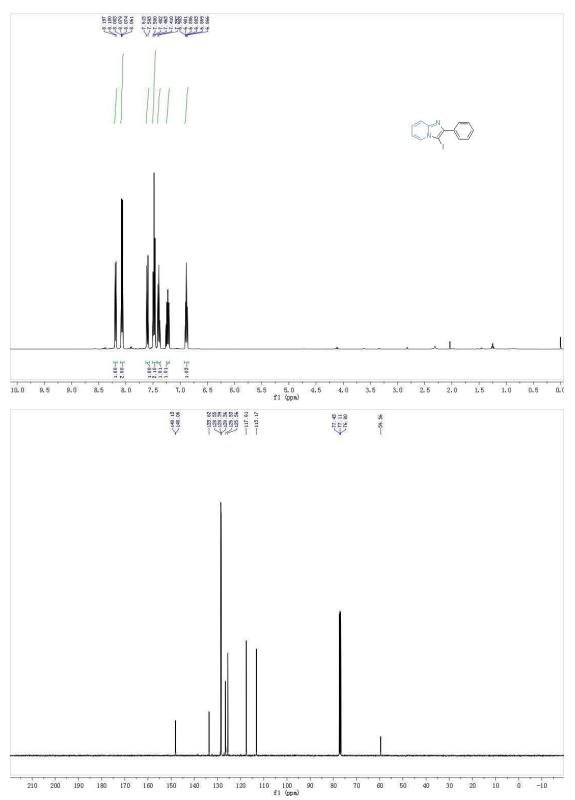

White solid, isolated yield 85%.¹H NMR (400MHz, CDCl₃): $\delta = 8.14$ (d, 1H, J = 4.4 Hz), 8.05(d, 2H, J = 7.2 Hz), 7.87(d, 1H, J = 6.8 Hz), 7.66(d, 1H, J = 8.8 Hz), 7.36-7.33(m, 3H), 7.29-7.26(m, 2H), 6.79-6.63(m, 2H), 6.12(d, 1H, J = 8.4 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 156.9$, 148.8, 142.8, 138.6, 137.7, 133.1, 128.5, 127.8, 126.8, 125.1, 122.5, 117.6, 115.4, 113.8, 112.3, 106.5.

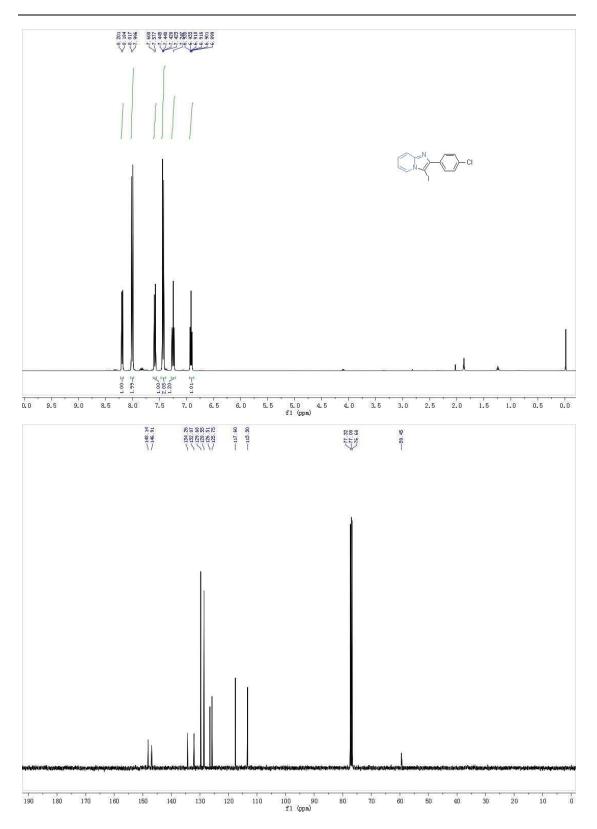
2-phenyl-3-(2-phenylethynyl)H-imidazo[1,2-a]pyridine (6)

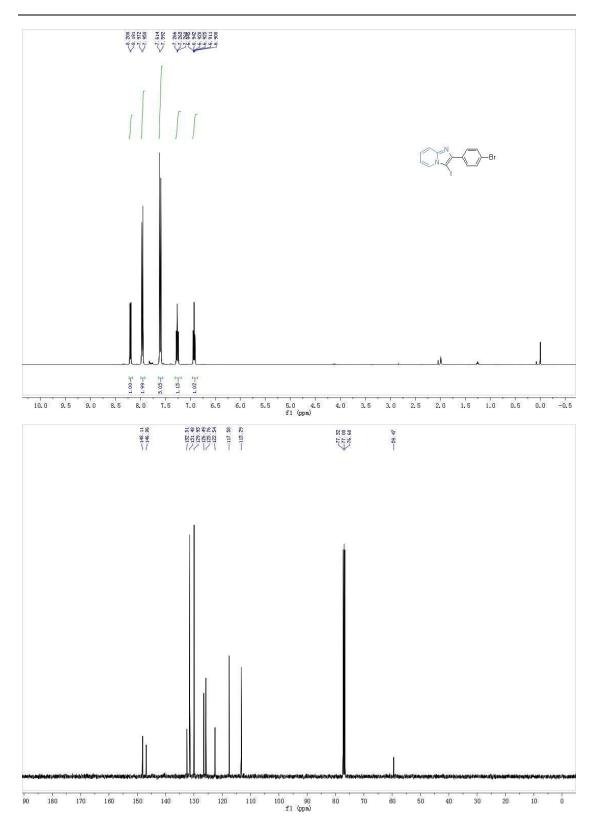
White solid, isolated yield 95%.¹H NMR (400MHz, CDCl₃): $\delta = 8.39-8.36-7.87(m, 3H)$, 7.60(d, 1H, J = 2.0 Hz), 7.50(d, 2H, J = 3.2 Hz), 7.42-7.40(m, 2H), 7.42-7.31(m, 4H), 7.28-7.24(m, 1H), 6.93(t, 1H, J = 6.8 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 147.9$, 145.2, 133.5, 131.2, 128.8, 128.7, 128.6, 128.5, 127.2, 127.1, 126.3, 125.1, 122.7, 117.5, 112.9, 104.7, 101.2. HRMS (ESI) m/z: Found: 295.1268. Calcd for $C_{21}H_{14}N_2$: (M+H)⁺ 295.1273.

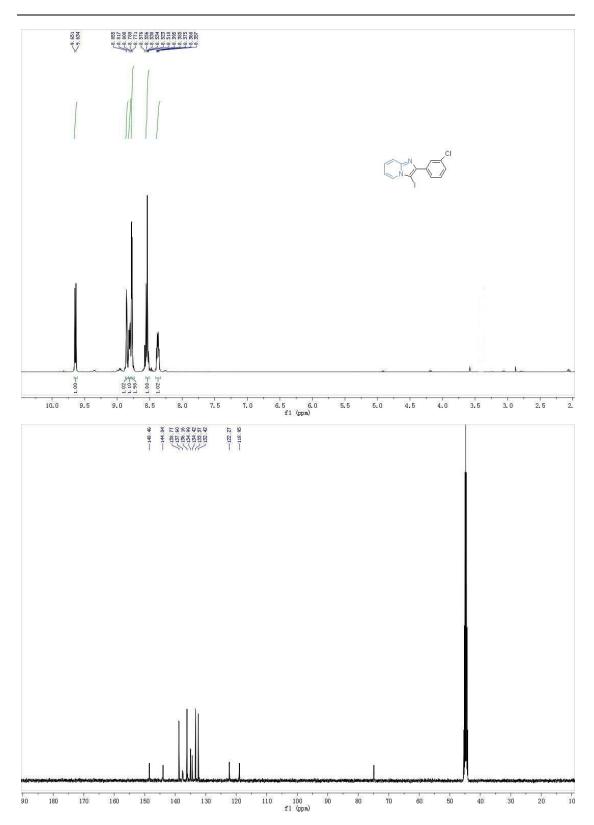
3-benzyl-2-phenylH-imidazo[1,2-a]pyridine (7)^[6]

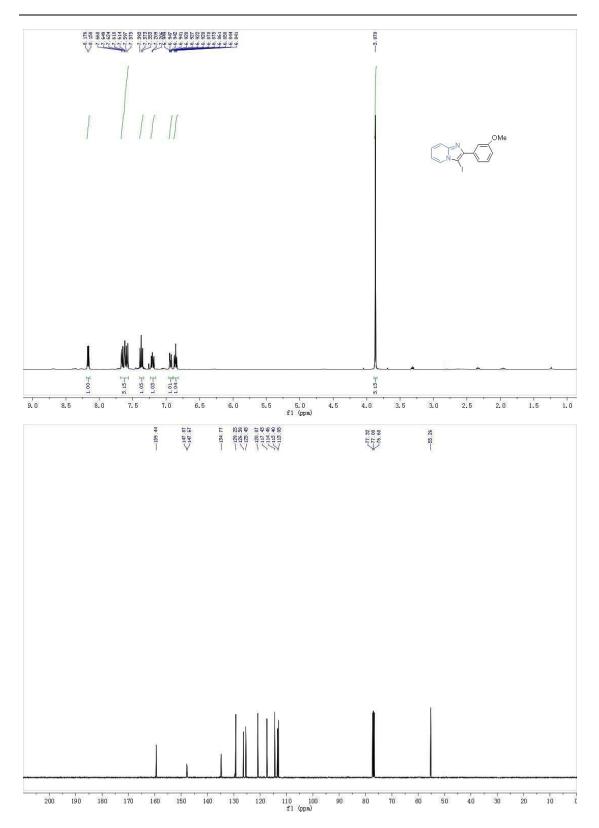
White solid, isolated yield 48%.¹H NMR (400MHz, CDCl₃): $\delta = 7.79$ (d, 2H, J = 7.2 Hz), 7.64(t, 2H, J = 8.8 Hz), 7.40(t, 2H, J = 7.2 Hz), 7.26-7.24(m, 3H), 7.11-7.09(m, 3H), 6.61(t, 1H, J = 6.8 Hz), 4.44(s, 2H); ¹³C NMR (100MHz, CDCl₃): $\delta = 144.7$, 143.9, 136.6, 134.4, 128.8, 128.4,

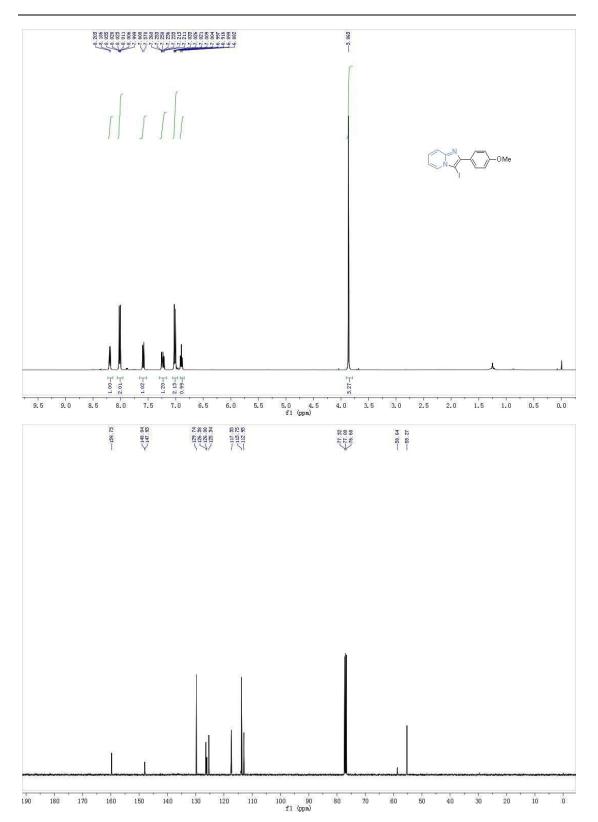

Reference

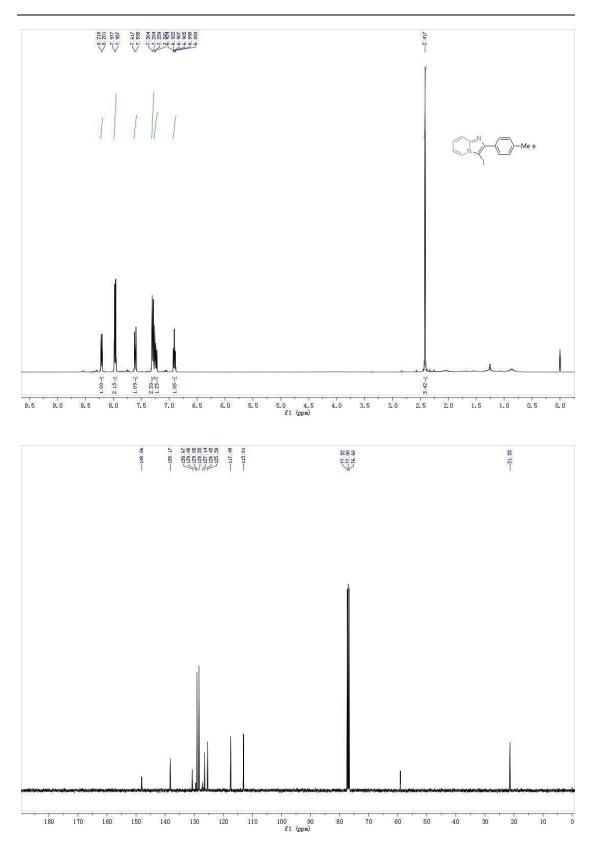

- DeGuzman, R. N.; Shen, Y.-F.; Neth, E. J.; Suib, S. L.; O'Young, C.-L.; Levine, S.; Newsam, J. M. *Chem. Mater.* **1994**, *6*, 815.
- 2 Zhang, Y.; Chen, Z.; Wu, W.; Zhang, Y.; Su, W. J. Org. Chem. 2013, 78, 12494.
- 3 Wan, J.; Zheng, C.-J.; Fung, M.-K.; Liu, X.-K.; Lee, C.-S.; Zhang, X.-H. J. Mater. *Chem.* **2012**, *22*, 4502.
- 4 Bagdi, A. K.; Rahman, M.; Santra, S.; Majee, A.; Hajra, A. Adv. Synth. Catal. **2013**, *355*, 1741.
- 5 Fei, Z.; Zhu, Y.; Liu, M.; Jia, F.; Wu, A. Tetrahedron Lett. 2013, 54, 1222.
- 6 Chernyak, N.; Gevorgyan, V. Angew. Chem. Int. Ed. 2010, 49, 2743.
- 7 Y. Gao, M. Yin, W. Wu, H. Huang, H. Jiang, Adv. Synth. Catal. 2013, 355, 2263.
- 8 D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174.

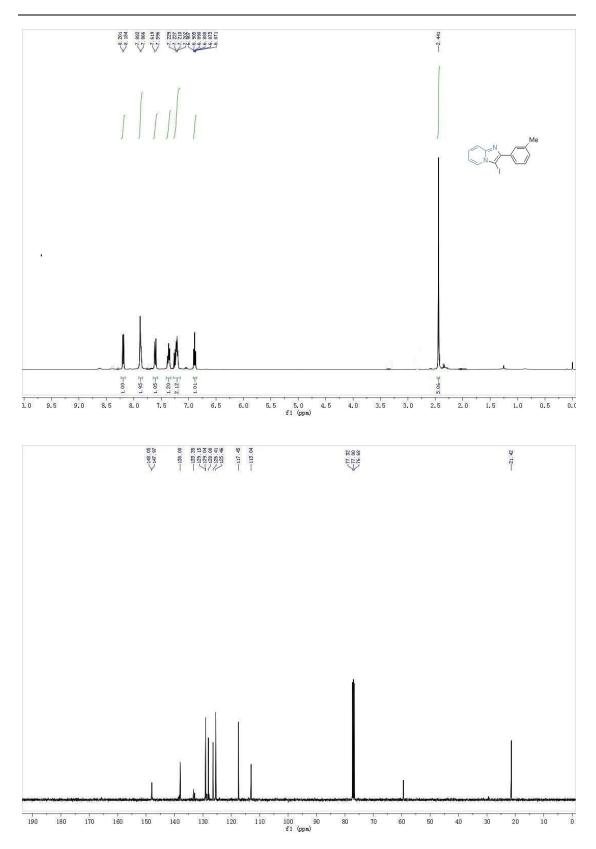

127.9, 127.5, 127.4, 126.7, 123.2, 117.5, 117.4, 111.9, 29.6.

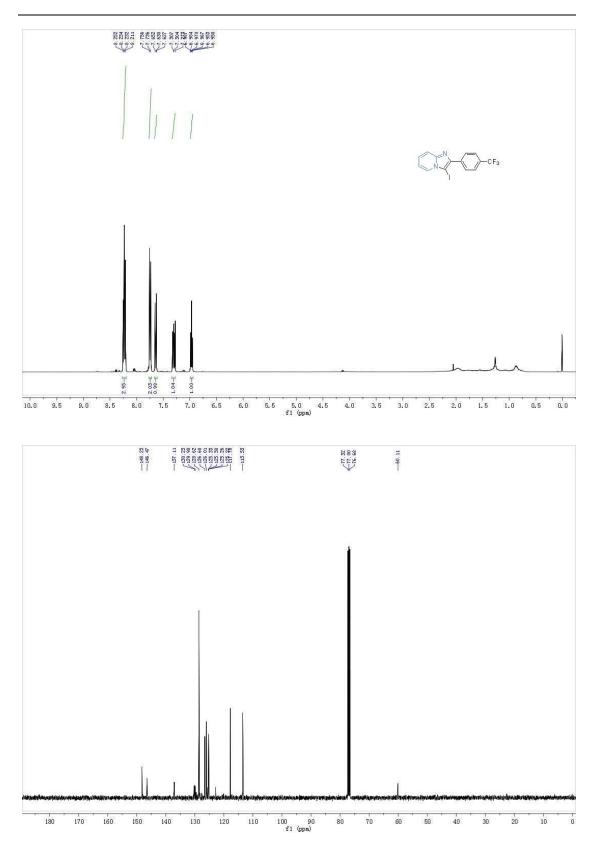

- 9 C. Sambiagio, S. P. Marsden, A. J. Blacker, P. C. McGowan, *Chem. Soc. Rev.* **2014**, *43*, 3525.
- 10 a) K. Sonogashira, Y. Tohda, N. Hagihara, *Tetrahedron Lett.* 1975, 4467; b) R. Chinchilla, C. Nájera, *Chem. Rev.* 2007, 107, 874.
- 11 A. D. Creamer, S. D. Dreher, P. J. Walsh, J. Am. Chem. Soc. 2012, 134, 13765.

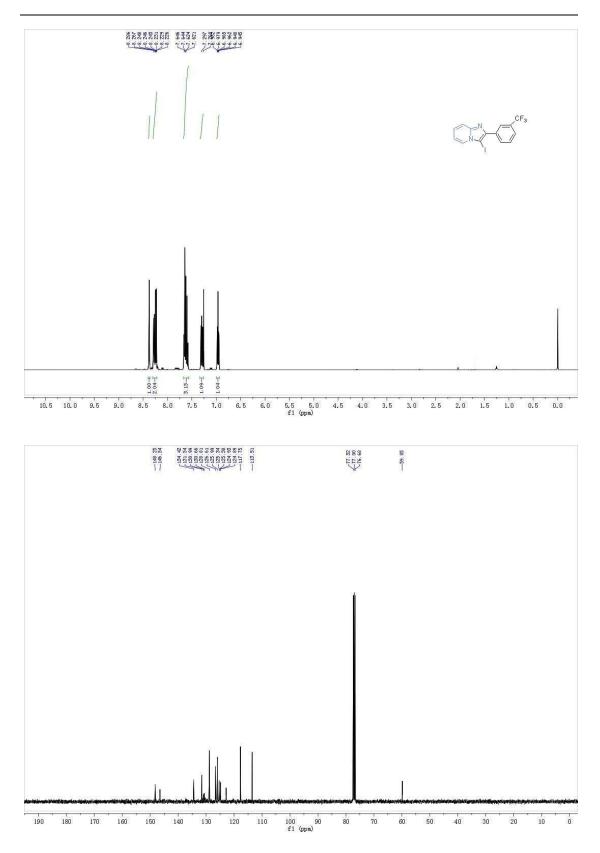

Copy of spectra

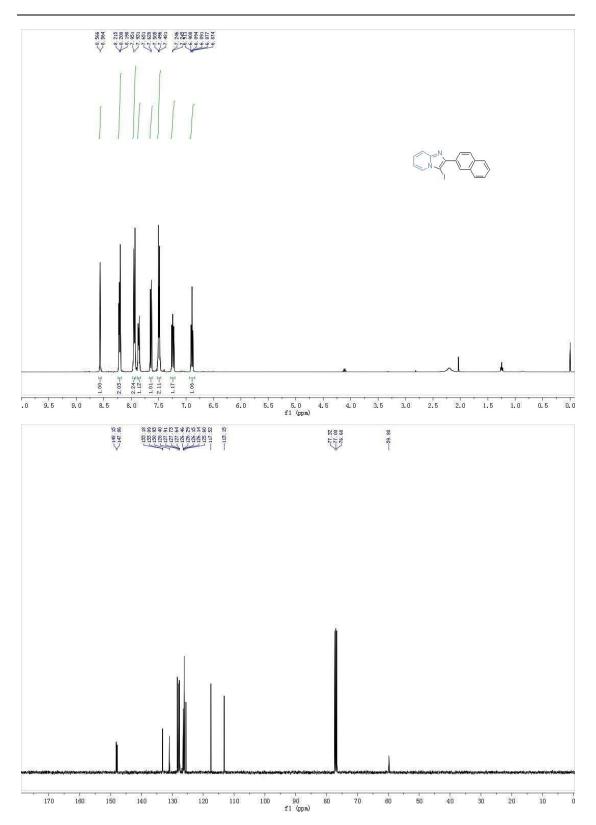


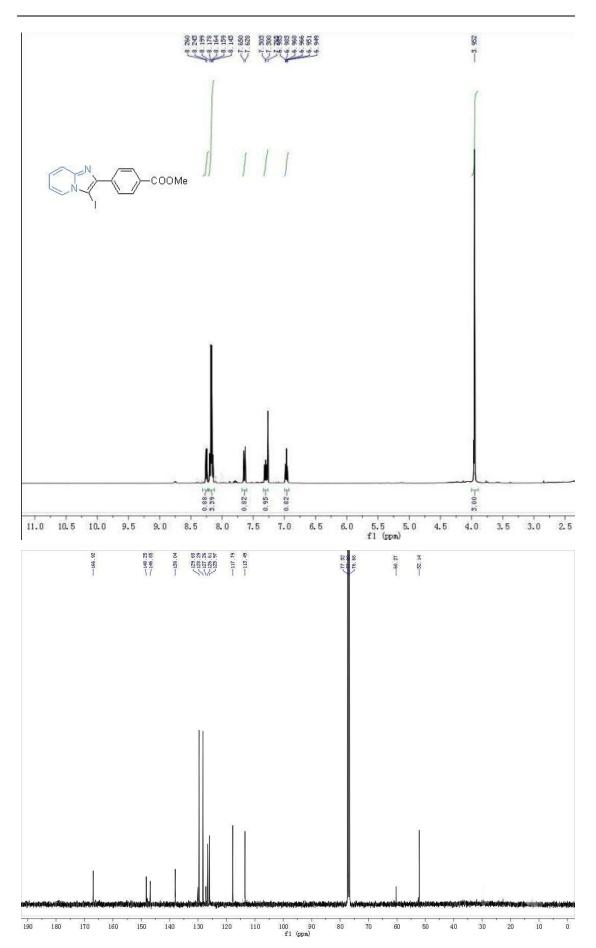


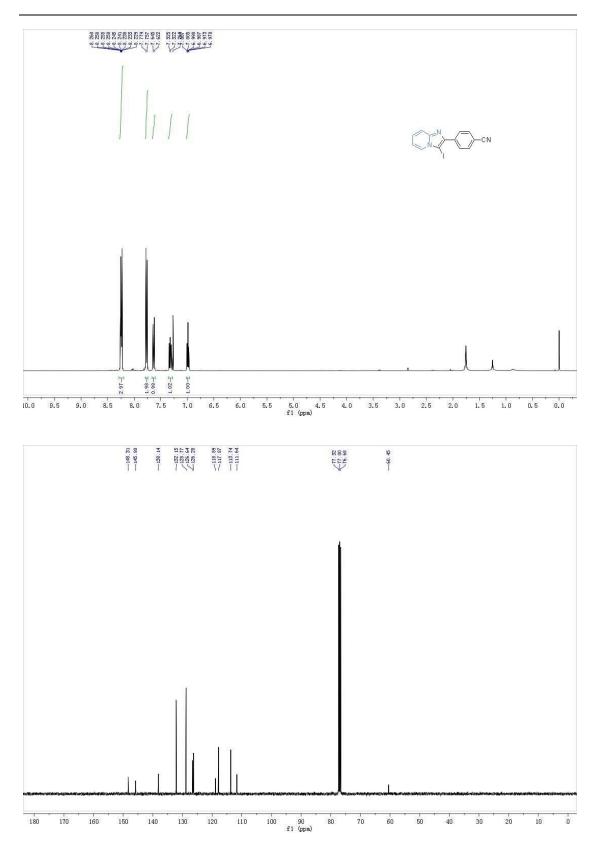


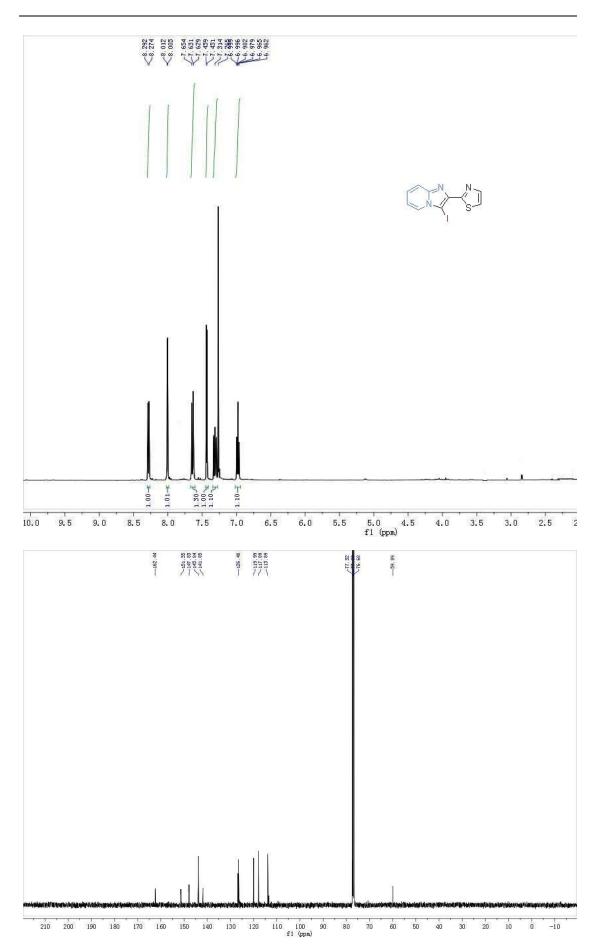


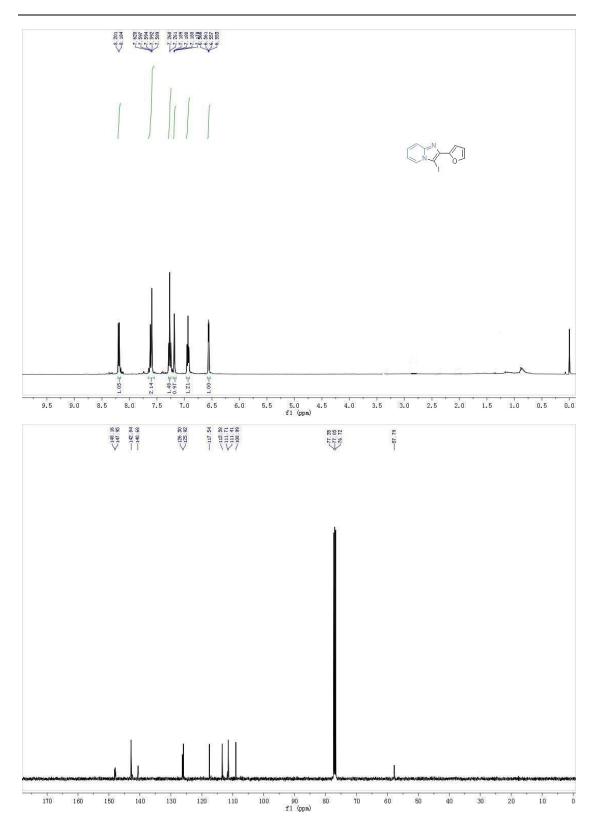


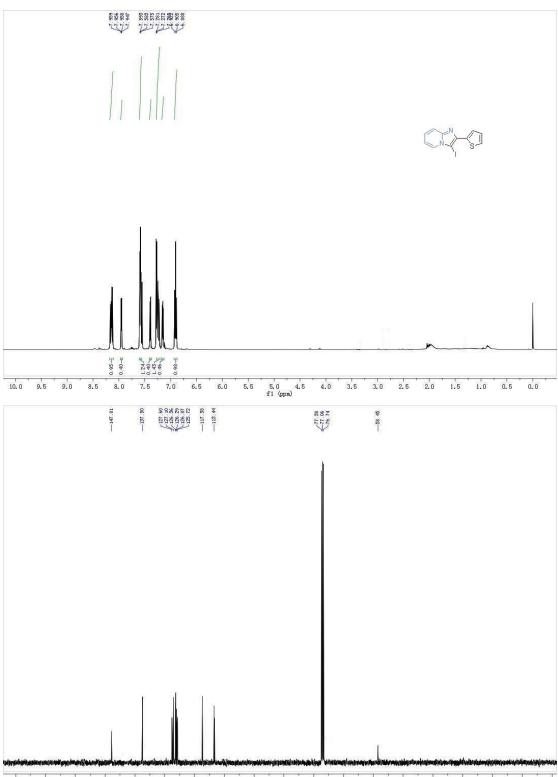


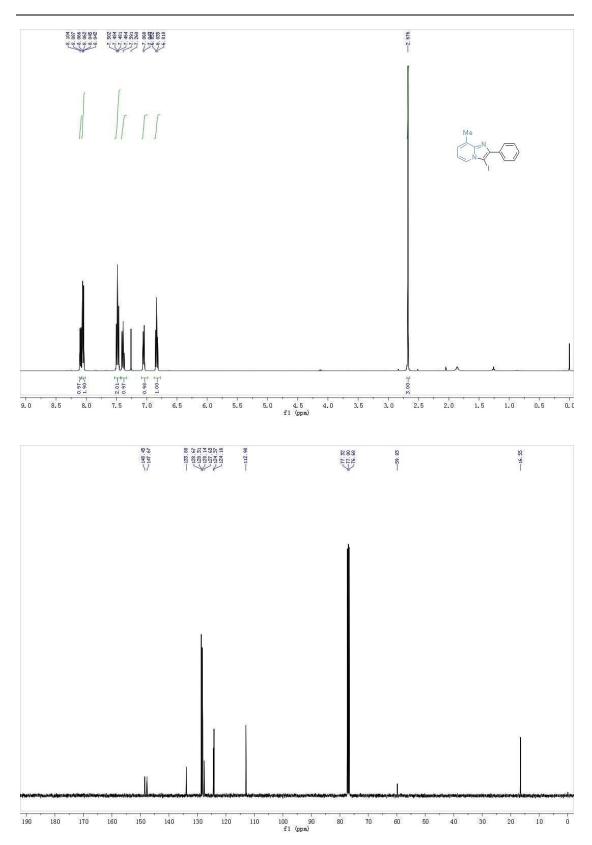


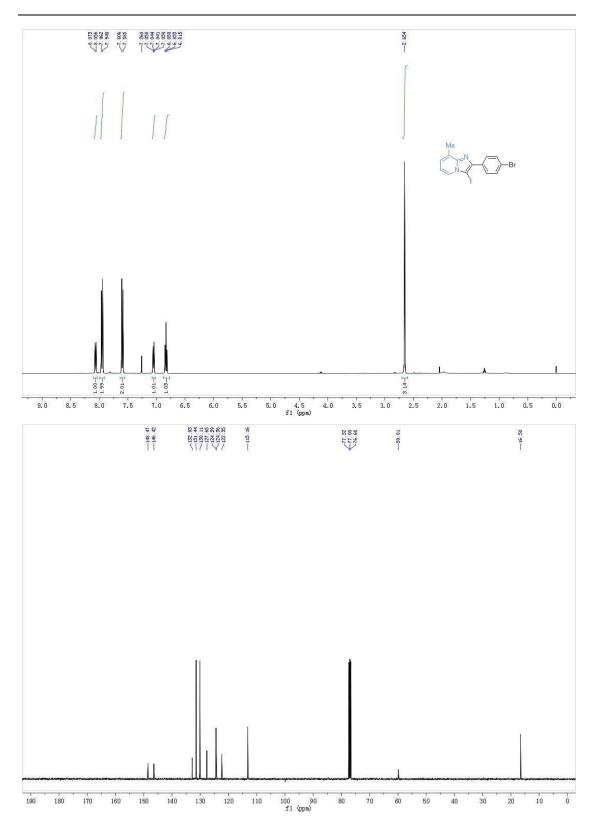


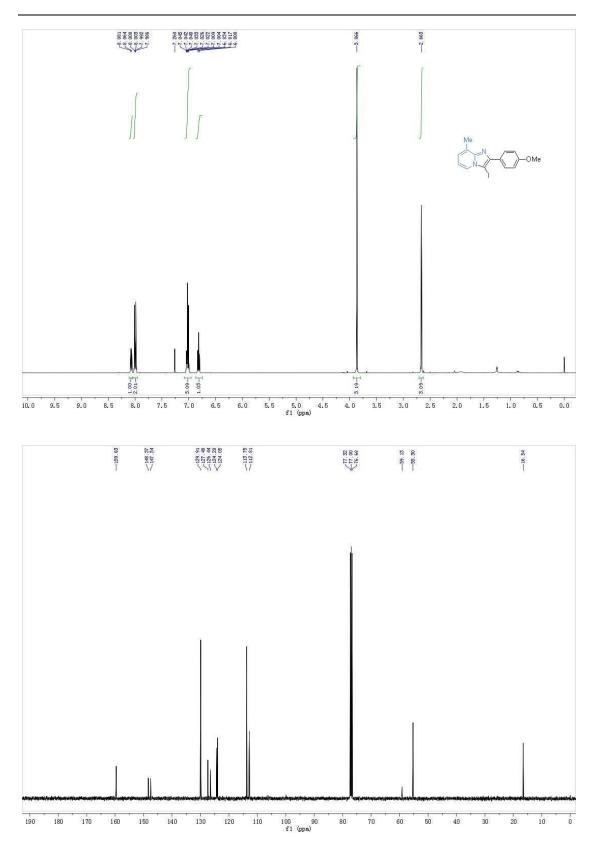


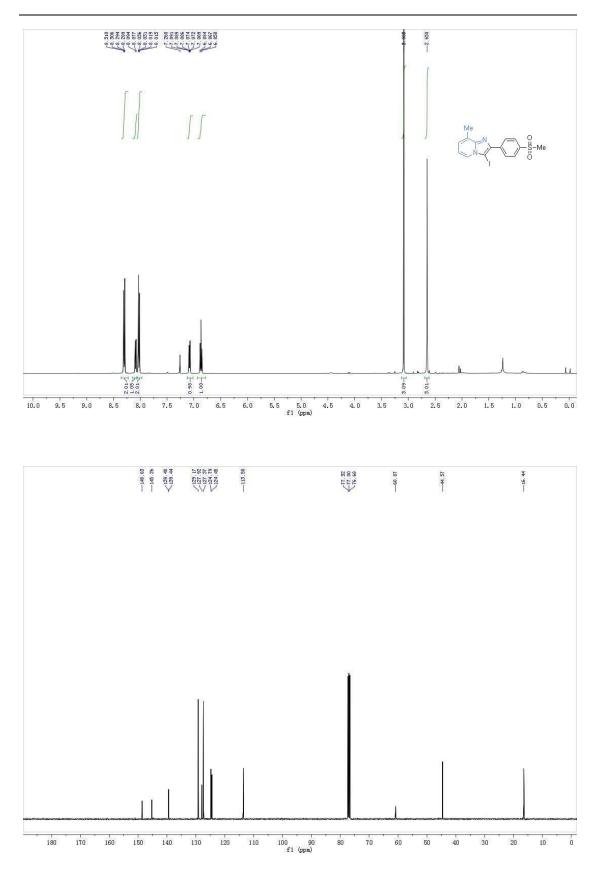


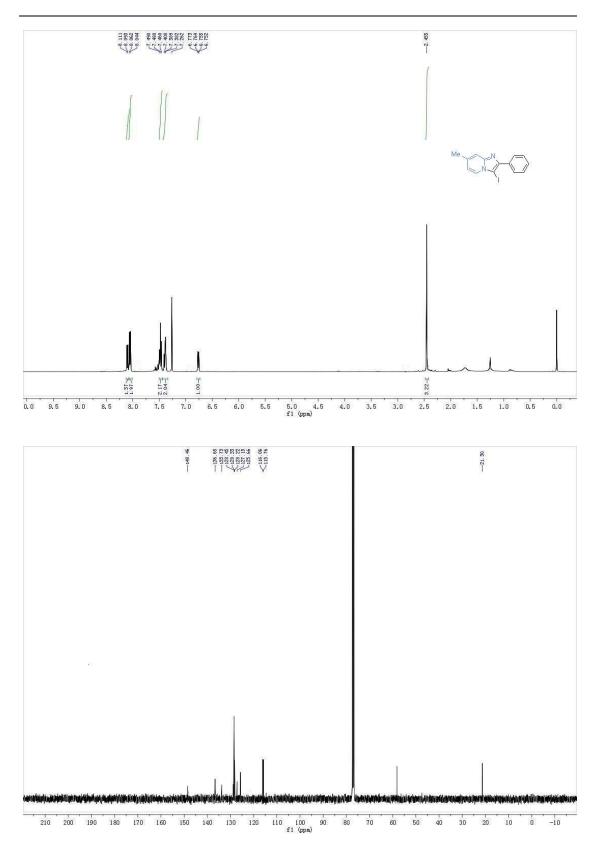


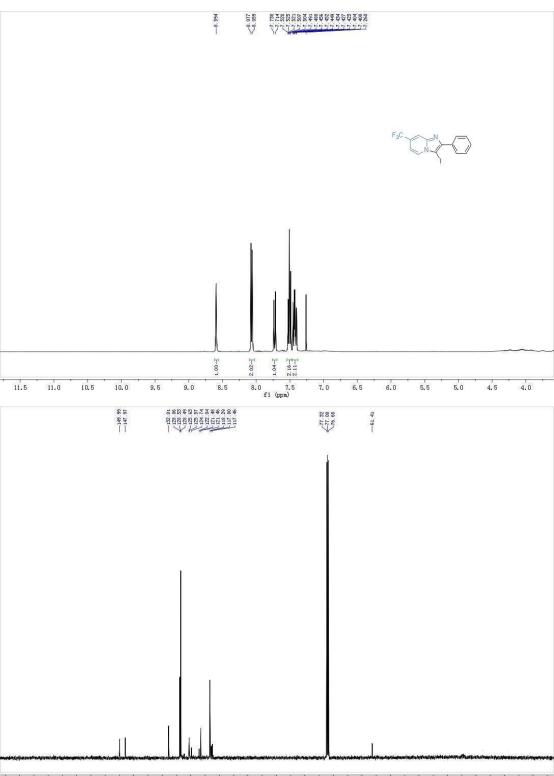


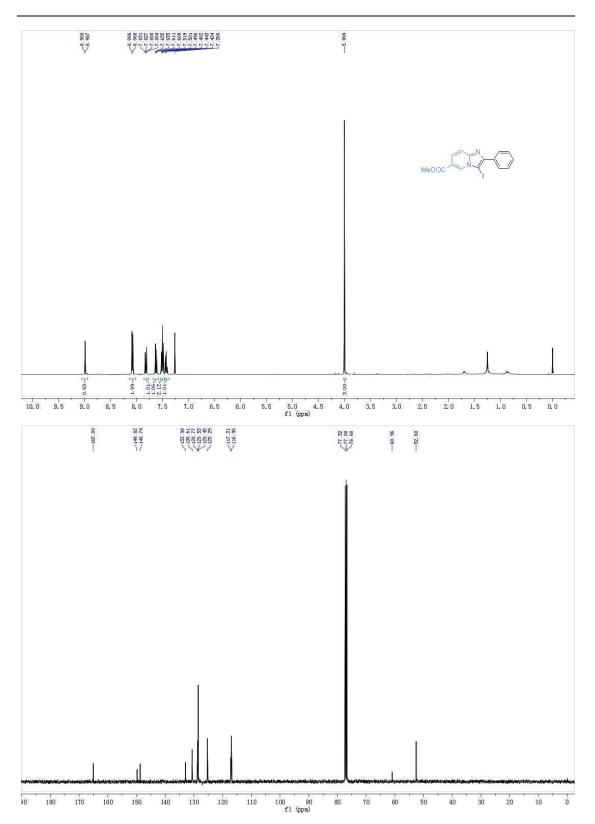


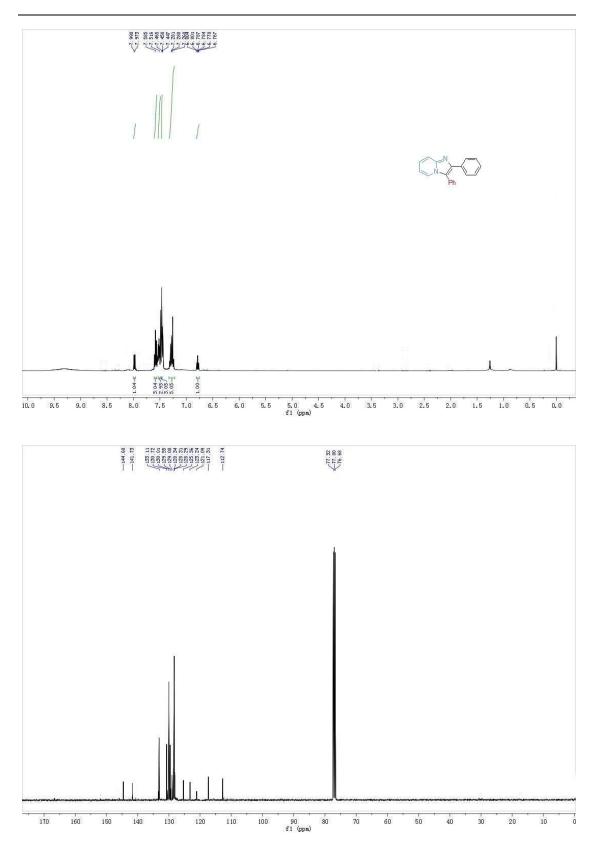


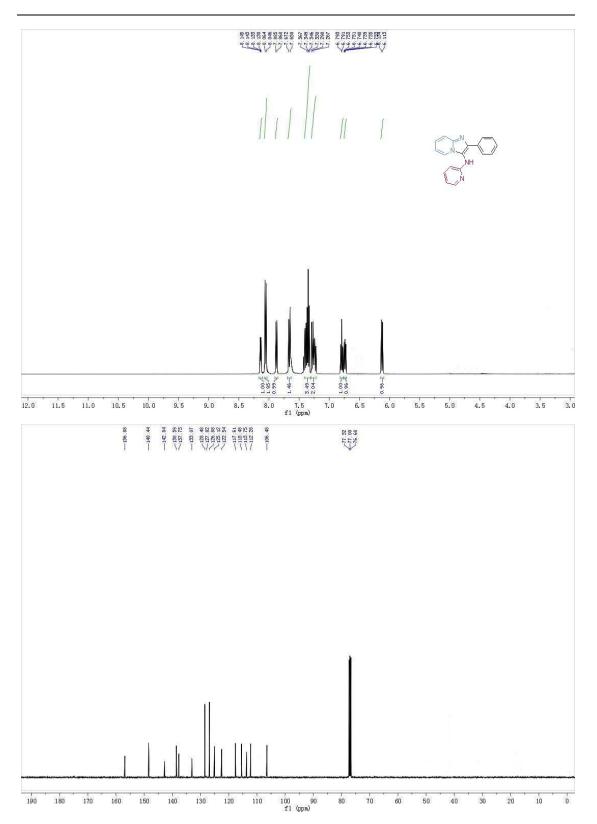


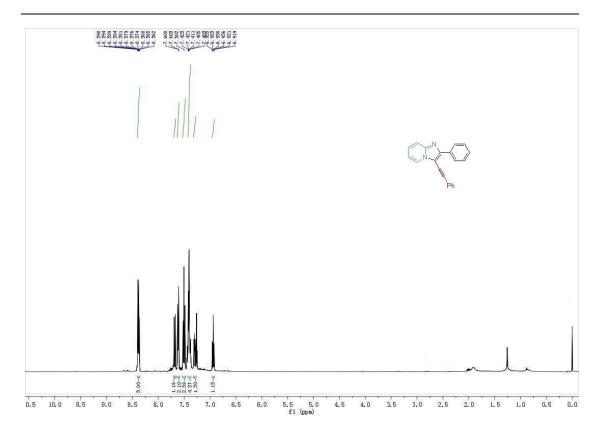

100 90 f1 (ppm)

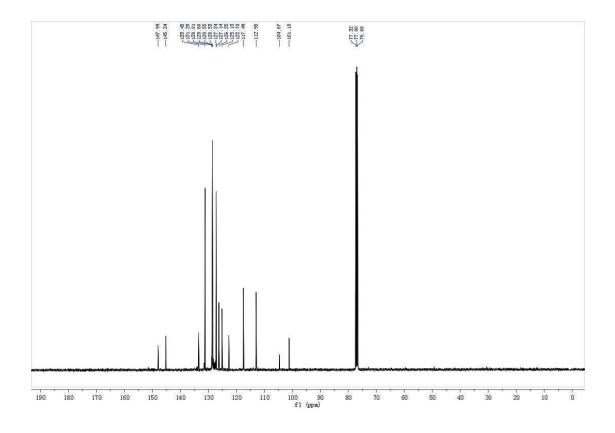











100 90 f1 (ppm) ò

