Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2014

Supplementary data

Prussian Blue/TiO₂ Nanocomposites as a Heterogeneous Photo-Fenton

Catalyst for Degradation of Organic Pollutants in Water

Xuning Li^{a,b}, Junhu Wang^{a,*}, Alexandre I. Rykov^a, Virender K. Sharma^c, Huangzhao Wei^a,

Changzi Jin^a, Xin liu^a, Mingrun Li^a, Songhua Yu^a, Chenglin Sun^a, and Dionysios D. Dionysiou^d

^aDalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road,

Dalian 116023, China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

^cDepartment of Environmental and Occupational Health, School of Public Health, Texas A&M

University, 1266 TAMU, College Station, Texas 77843, USA

^dEnvironmental Engineering and Science Program, Department of Biomedical, Chemical and

Environmental Engineering, 705 Engineering Research Center, University of Cincinnati,

Cincinnati, OH 45221, USA

Total pages: 9

Number of Figures: 7

^{*}Corresponding author. Tel: +86-411-84379159; Fax: +86-411-84685940; Email: wangjh@dicp.ac.cn

Fig. S1. Diagram of room temperature ⁵⁷Fe Mössbauer measurement setup with UV lamp in this study.

Fig. S2. The emission spectrum of UV lamp used in the photo-Fenton processes.

Fig. S3. The emission spectrum of visible light lamp used in the photo-Fenton process.

Fig. S4. The TOC removal efficiency of RhB in the photo-Fenton process. (Inset: The UV-vis absorption spectra of RhB during the photo-Fenton process at different time intervals.) Reaction conditions: $[RhB] = 12 \text{ mg } \text{L}^{-1}$, $[H_2O_2] = 0.4 \text{ M}$, catalyst = 1.0 g L⁻¹, and T = 308 K.

Fig. S5. Effect of PB content on the catalytic activities of PB/TiO₂ NPs for RhB degradation in dark. Reaction conditions: $[RhB] = 12 \text{ mg } \text{L}^{-1}$, $[H_2O_2] = 0.4 \text{ M}$, catalyst = 1.0 g L⁻¹, and T = 308 K.

Fig. S6. Effect of PB content on the catalytic activities of PB/TiO₂ NPs for RhB degradation under UV irradiation. Reaction conditions: $[RhB] = 12 \text{ mg } \text{L}^{-1}$, $[H_2O_2] = 0.4 \text{ M}$, catalyst = 1.0 g L⁻¹, T = 308 K, and 27 W black light with 2.5 mW cm⁻² intensity.

Fig. S7. The catalytic activities of RhB degradation in different systems. Reaction conditions: $[RhB] = 12 \text{ mg } \text{L}^{-1}, [H_2O_2] = 0.4 \text{ M}, \text{ catalyst} = 1.0 \text{ g } \text{L}^{-1}, \text{T} = 308 \text{ K},$

Fig. S1. Diagram of room temperature ⁵⁷Fe Mössbauer measurement setup with UV lamp in this

study.

Fig. S2. The emission spectrum of UV lamp used in the photo-Fenton process.

Fig. S3. The emission spectrum of visible light lamp used in the photo-Fenton process.

Fig. S4. The TOC removal efficiency of RhB in the photo-Fenton process. (Inset: The UV-vis absorption spectra of RhB during the photo-Fenton process at different time intervals.) Reaction conditions: $[RhB] = 12 \text{ mg } \text{L}^{-1}$, $[H_2O_2] = 0.4 \text{ M}$, catalyst = 1.0 g L⁻¹, and T = 308 K.

Fig. S5. Effect of PB content on the catalytic activities of PB/TiO₂ NPs for RhB degradation in dark. Reaction conditions: $[RhB] = 12 \text{ mg } \text{L}^{-1}$, $[H_2O_2] = 0.4 \text{ M}$, catalyst = 1.0 g L⁻¹, and T = 308 K.

Fig. S6. Effect of PB content on the catalytic activities of PB/TiO₂ NPs for RhB degradation under UV irradiation. Reaction conditions: [RhB] = 12 mg L⁻¹, [H₂O₂] = 0.4 M, catalyst = 1.0 g L⁻¹, T = 308 K, and 27 W black light with 2.5 mW cm⁻² intensity.

Fig. S7. The catalytic activities of RhB degradation in different systems. Reaction conditions: $[RhB] = 12 \text{ mg } L^{-1}, [H_2O_2] = 0.4 \text{ M}, \text{ catalyst} = 1.0 \text{ g } L^{-1}, T = 308 \text{ K}.$

Appendix A. Supplementary data

Figures of Mössbauer measurement setup, emission spectra of the UV and visible light lamps, TOC removal efficiency of RhB in the photo-Fenton process, effect of PB content on the catalytic activities in dark and UV irradiation and the visible-Fenton activity of PB/TiO₂ NPs could be found, in the online version, at xxxx.