Electronic Supplementary Information

for

A composite photocatalyst of an organic electron donor-acceptor dyad and a Pt catalyst supported on semiconductor nanosheets for efficient hydrogen evolution from oxalic acid

Yusuke Yamada, Akifumi Nomura, Hideyuki Tadokoro and Shunichi Fukuzumi*

Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan

Fig. S1 Nitrogen adsorption-desorption isotherms of (a) $K_4Nb_6O_{17}$ and niobate-NS and (b) KTiNbO₅ and titanoniobate-NS at -196 °C.

Fig. S2 Powder X-ray diffraction patterns of $K_4Nb_6O_{17}$ in the form of (a) nanoscroll and (b) layered oxide (as-prepared). (c) Peak positions and intensities indicated in literature.^{S1} (d) Schematic drawings of crystal structure. NbO₆ units are indicated by green octahedra with red dots and K ions are indicated by purple circles.^{S2}

(S1) A. D. Wadsley, *Acta Cryst.*, 1964, 17, 623.
(S2) K. Momma and F. Izumi, *J. Appl. Crystallogr.*, 2011, 44, 1272.

Fig. S3 Powder X-ray diffraction patterns of KTiNbO₅ in the form of (a) nanoscroll and (b) layered oxide (as-prepared). (c) Peak positions and intensities indicated in literature.^{S3} (d) Schematic drawings of crystal structure. TiO₆ or NbO₆ units are indicated by blue octahedra with red dots and K ions are indicated by purple circles.^{S2}

(S3) G. H. Du, Y. Yu, Q. Chen, R. H. Wang, W. Zhou and L. M. Peng, *Chem. Phys. Lett.*, 2003, **377**, 445.

Fig. S4 TG/DTA curves of (a) niobate-NS and (b) titanoniobate-NS at temperature ranging from 20 $^{\circ}$ C to 600 $^{\circ}$ C.

Fig. S5 (a) Nitrogen adsorption-desorption isotherms at -196 °C and (b) powder X-ray diffraction of QuPh⁺–NA/niobate-NS (red) and niobate-NS (black).

Fig. S6 TG/DTA curves of (a) $QuPh^+$ -NA/niobate-NS and (b) $QuPh^+$ -NA/titanoniobate-NS at temperature ranging from 20 °C to 600 °C.

Fig. S7 IR absorption spectra of (a) $(QuPh^+-NA)(ClO_4)$, (b) $QuPh^+-NA/niobate-NS$ and (c) $QuPh^+-NA/titanoniobate-NS$. The samples were pelletized under pressurized conditions after mixing with KBr. The IR spectra were taken on a Jasco FT/IR-6200 spectrometer with the resolution of 4 cm⁻¹.

Fig. S8 TEM images of QuPh⁺–NA/niobate-NS after the photoirradiation for 19 h in the presence of oxalic acid and $[Pt(NH_3)_4]^{2+}$.

Fig. S9 Time course of absorbance of $QuPh^+$ –NA/niobate-NS at 400 nm during the photocatalytic H₂ evolution.

Fig. S10 H₂-evolution rates depending on the irradiance of a solar simulator (AM 1.5G). The photocatalytic H₂ evolution was performed by photoirradiation of an N₂-saturated aqueous suspension (2.mL) containing oxalic acid (50 mM), K₂PtCl₄ (10 μ M) and QuPh⁺–NA/niobate-NS (11.6 mg) using an HAL-320 solar simulator (Asahi spectra, AM 1.5G). The irradiance for each reaction was determined by a CS-20 irradiation meter (Asahi spectra).

Figure S11 Time courses of CO₂ evolution by photoirradiation ($\lambda > 340$ nm) of an O₂-saturated aqueous suspension (2.0 mL, pH 1.4) containing oxalic acid (50 mM) and niobate-NS (11.6 mg, black) and QuPh⁺–NA/niobate-NS (11.6 mg, red).