Supporting information

Superior catalytic performance of $\mathrm{Ce}_{1-\mathrm{x}} \mathrm{Bi}_{\mathrm{x}} \mathrm{O}_{2-\delta}$ solid solution and $\mathrm{Au} / \mathrm{Ce}_{1-\mathrm{x}} \mathrm{Bi}_{\mathrm{x}} \mathrm{O}_{2-\delta}$ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution
Zhenzhen Miao, ${ }^{a, b}$ Yibo Zhang, ${ }^{* a, c}$ Xiqiang Pan, ${ }^{d}$ Tianxiao Wu, ${ }^{a}$ Bin Zhang, ${ }^{a}$ Jingwei Li, ${ }^{a, b}$ Ting Yi, ${ }^{a, b}$ Zhengdong Zhang, ${ }^{a}$ and Xiangguang Yang* ${ }^{a, c}$
${ }^{a}$ State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. E-mail: xgyang@ciac.ac.cn, yibozhang@ciac.ac.cn; Tel: 86-431-8526-2228
${ }^{b}$ University of Chinese Academy of Sciences, Beijing, 100039, China.
${ }^{c}$ Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
${ }^{d}$ The Northwest Research Institute of Chemistry Industry, Xi'an, Shaanxi, 710061, China.

Fig. S1 $\mathrm{CeO}_{2}, \mathrm{Ce}_{0.95} \mathrm{Bi}_{0.05} \mathrm{O}_{2-\delta}, \mathrm{Ce}_{0.9} \mathrm{Bi}_{0.1} \mathrm{O}_{2-\delta}, \mathrm{Ce}_{0.8} \mathrm{Bi}_{0.2} \mathrm{O}_{2-\delta}$ and $\mathrm{Ce}_{0.5} \mathrm{Bi}_{0.5} \mathrm{O}_{2-\delta}$ powder from left to right.

Fig. S2 SEM images of (a) CeO_{2}, (b) $\mathrm{Ce}_{0.95} \mathrm{Bi}_{0.05} \mathrm{O}_{2-\delta}$, (c) $\mathrm{Ce}_{0.9} \mathrm{Bi}_{0.1} \mathrm{O}_{2-\delta}$, (d) $\mathrm{Ce}_{0.8} \mathrm{Bi}_{0.2} \mathrm{O}_{2-\delta}$ and (e) $\mathrm{Ce}_{0.5} \mathrm{Bi}_{0.5} \mathrm{O}_{2-\delta}$.

Fig. $\mathbf{S 3} \mathrm{N}_{2}$ adsorption isotherms and pore size distribution curves of (a) CeO_{2}, (b)
$\mathrm{Ce}_{0.95} \mathrm{Bi}_{0.05} \mathrm{O}_{2-\delta}$,
(c) $\mathrm{Ce}_{0.9} \mathrm{Bi}_{0.1} \mathrm{O}_{2-\delta}$,
(d) $\mathrm{Ce}_{0.8} \mathrm{Bi}_{0.2} \mathrm{O}_{2-\delta}$ and (e) $\mathrm{Ce}_{0.5} \mathrm{Bi}_{0.5} \mathrm{O}_{2-\delta}$.

Fig. S4 ${ }^{1} \mathrm{H}$ NMR spectra (DMSO, 300 MHz): $\delta 6.18,5.15,4.35$ belong to 2,5bishydroxymethylfuran (BHMF), $\delta 3.33,2.50$ belong to DMSO solvent. (After reacted for 1 h with the presence of $\mathrm{Ce}_{0.875} \mathrm{Bi}_{0.125} \mathrm{O}_{2-\delta}$, the resulted reaction solution was extracted by ethyl ether. The solid obtained after evaporating the ethyl ether was solved in deuterated DMSO and detected by ${ }^{1} \mathrm{H}$ NMR.)

Fig. S5 Mass spectra of BHMF obtained from gas chromatography-quadrupole mass spectrometry (GC-qMS).
After extracting the resulted reaction solution by ethyl ether, BHMF was quantitative analyzed by a Shimadzu GCMS-QP2010 Plus gas chromatograph with a quadrupole mass spectrometric detector (Shimadzu, Kyoto, Japan). An Agilent WAX capillary column ($60 \mathrm{~m} \times 0.25 \mathrm{~mm}, 0.25 \mu \mathrm{~m}$) and helium as carrier gas flowing at $1.0 \mathrm{ml} / \mathrm{min}$ were used for the separation. The GC injector port temperature was $250^{\circ} \mathrm{C}$. The oven temperature was programmed from $60^{\circ} \mathrm{C}(3 \mathrm{~min})$ to $250^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$, and then held at $250^{\circ} \mathrm{C}$ for 30 min . The total analysis time was 52 min . The mass detector operated in full-scan mode with the mass/charge ratio ranging from $\mathrm{m} / \mathrm{z} 20$ to 800 .

Table S1 Screening with other M-doped $\mathrm{Ce}_{0.9} \mathrm{M}_{0.1} \mathrm{O}_{2-8}$

Entry	Sample	HMF Conversion (\%)	$\mathrm{Y}_{\mathrm{FDCA}^{\mathrm{b}}(\%)}$	$\mathrm{Y}_{\mathrm{HFCA}}{ }^{\mathrm{b}}(\%)$
1	$\mathrm{Ce}_{0.9} \mathrm{Y}_{0.1} \mathrm{O}_{2-\delta}$	93	2	13
2	$\mathrm{Ce}_{0.9} \mathrm{La}_{0.1} \mathrm{O}_{2-\delta}$	93	2	15
3	$\mathrm{Ce}_{0.9} \mathrm{Mn}_{0.1} \mathrm{O}_{2-\delta}$	91	-	7
4	$\mathrm{Ce}_{0.9} \mathrm{Fe}_{0.1} \mathrm{O}_{2-\delta}$	90	2	10

${ }^{\text {a }}$ General conditions: 0.15 M HMF solution in $0.6 \mathrm{M} \mathrm{NaOH}(6 \mathrm{ml}), 0.1 \mathrm{~g}$ catalyst, $65^{\circ} \mathrm{C}, 1.0 \mathrm{MPa} \mathrm{O}{ }_{2} .{ }^{\mathrm{b}}$ Yield determined by HPLC after reacted for 1 h .

Fig. S6 XRD patterns of samples after reacted for 1 h , (a) $\mathrm{Au} / \mathrm{CeO}_{2}$, (b)
$\mathrm{Au} / \mathrm{Ce}_{0.9} \mathrm{Bi}_{0.1} \mathrm{O}_{2-\delta}$, (c) $\mathrm{Au} / \mathrm{Ce}_{0.8} \mathrm{Bi}_{0.2} \mathrm{O}_{2-\delta}$ and (d) $\mathrm{Au} / \mathrm{Ce}_{0.5} \mathrm{Bi}_{0.5} \mathrm{O}_{2-\delta}$. Right: partial enlarged view of the left.

Fig. S7 XPS Au 4f peak of (a) $\mathrm{Au} / \mathrm{CeO}_{2}$, (b) $\mathrm{Au} / \mathrm{Ce}_{0.9} \mathrm{Bi}_{0.1} \mathrm{O}_{2-\delta}$, (c) $\mathrm{Au} / \mathrm{Ce}_{0.8} \mathrm{Bi}_{0.2} \mathrm{O}_{2-\delta}$ and (d) $\mathrm{Au} / \mathrm{Ce}_{0.5} \mathrm{Bi}_{0.5} \mathrm{O}_{2-\delta}$ after reacted for 1 h .

Fig. S8 HMF conversion and product yields as a function of amount of base in the oxidation of HMF in aqueous solution over $\mathrm{Au} / \mathrm{Ce}_{0.9} \mathrm{Bi}_{0.1} \mathrm{O}_{2-\delta}$ catalyst $(\mathrm{Au}: \mathrm{HMF}=$ $3.33 \times 10^{-3} \mathrm{~mol} / \mathrm{mol}, 1.0 \mathrm{MPa} \mathrm{O} 2,6{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; HMF: ■, FDCA: • HFCA: $\boldsymbol{\Delta}$, FFCA: V).

Fig. S9 Product yields as a function of reaction temperature in the oxidation of HMF in aqueous solution over $\mathrm{Au} / \mathrm{Ce}_{0.9} \mathrm{Bi}_{0.1} \mathrm{O}_{2-\delta}$ catalyst $\left(\mathrm{Au}: \mathrm{HMF}=6.67 \times 10^{-3} \mathrm{~mol} / \mathrm{mol}, 4\right.$ equiv. $\mathrm{NaOH}, 1.0 \mathrm{MPa} \mathrm{O}_{2}, 0.5 \mathrm{~h}$; FDCA: $■$, $\mathrm{HFCA}: \bullet$).

Fig. S10 Product yields as a function of O_{2} pressure in the oxidation of HMF in aqueous solution over $\mathrm{Au} / \mathrm{Ce}_{0.9} \mathrm{Bi}_{0.1} \mathrm{O}_{2-\delta}$ catalyst ($\mathrm{Au}: \mathrm{HMF}=6.67 \times 10^{-3} \mathrm{~mol} / \mathrm{mol}, 4$ equiv. $\mathrm{NaOH}, 65^{\circ} \mathrm{C}, 1 \mathrm{~h}$; FDCA: ■, HFCA: •).

Fig. S11 Product yields as a function of the relative amounts of HMF and Au in the oxidation of HMF in aqueous solution over $\mathrm{Au} / \mathrm{Ce}_{0.9} \mathrm{Bi}_{0.1} \mathrm{O}_{2-\delta}$ catalyst (4 equiv.
$\mathrm{NaOH}, 1.0 \mathrm{MPa} \mathrm{O}_{2}, 65^{\circ} \mathrm{C}, 1 \mathrm{~h}$; FDCA: ■, HFCA: •).

