Supporting information

Superior catalytic performance of $Ce_{1-x}Bi_xO_{2-\delta}$ solid solution and $Au/Ce_{1-x}Bi_xO_{2-\delta}$ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution

Zhenzhen Miao, ^{*a,b*} Yibo Zhang, * ^{*a,c*} Xiqiang Pan, ^{*d*} Tianxiao Wu, ^{*a*} Bin Zhang, ^{*a*} Jingwei Li, ^{*a,b*} Ting Yi, ^{*a,b*} Zhengdong Zhang, ^{*a*} and Xiangguang Yang * ^{*a,c*}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. E-mail: xgyang@ciac.ac.cn, yibozhang@ciac.ac.cn; Tel: 86-431-8526-2228
^b University of Chinese Academy of Sciences, Beijing, 100039, China.
^c Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.

^d The Northwest Research Institute of Chemistry Industry, Xi'an, Shaanxi, 710061, China.

Fig. S1 CeO₂, Ce_{0.95}Bi_{0.05}O_{2- δ}, Ce_{0.9}Bi_{0.1}O_{2- δ}, Ce_{0.8}Bi_{0.2}O_{2- δ} and Ce_{0.5}Bi_{0.5}O_{2- δ} powder from left to right.

Fig. S2 SEM images of (a) CeO₂, (b) Ce_{0.95}Bi_{0.05}O_{2- δ}, (c) Ce_{0.9}Bi_{0.1}O_{2- δ}, (d) Ce_{0.8}Bi_{0.2}O_{2- δ} and (e) Ce_{0.5}Bi_{0.5}O_{2- δ}.

Fig. S3 N₂ adsorption isotherms and pore size distribution curves of (a) CeO₂, (b) Ce_{0.95}Bi_{0.05}O_{2- δ}, (c) Ce_{0.9}Bi_{0.1}O_{2- δ}, (d) Ce_{0.8}Bi_{0.2}O_{2- δ} and (e) Ce_{0.5}Bi_{0.5}O_{2- δ}.

Fig. S4 ¹H NMR spectra (DMSO, 300 MHz): δ 6.18, 5.15, 4.35 belong to 2,5bishydroxymethylfuran (BHMF), δ 3.33, 2.50 belong to DMSO solvent. (After reacted for 1 h with the presence of Ce_{0.875}Bi_{0.125}O_{2- δ}, the resulted reaction solution was extracted by ethyl ether. The solid obtained after evaporating the ethyl ether was solved in deuterated DMSO and detected by ¹H NMR.)

Fig. S5 Mass spectra of BHMF obtained from gas chromatography-quadrupole mass spectrometry (GC-qMS).

After extracting the resulted reaction solution by ethyl ether, BHMF was quantitative analyzed by a Shimadzu GCMS-QP2010 Plus gas chromatograph with a quadrupole mass spectrometric detector (Shimadzu, Kyoto, Japan). An Agilent WAX capillary column (60 m \times 0.25 mm, 0.25 µm) and helium as carrier gas flowing at 1.0 ml/min were used for the separation. The GC injector port temperature was 250 °C. The oven temperature was programmed from 60 °C (3 min) to 250 °C at 10 °C /min, and then held at 250 °C for 30 min. The total analysis time was 52 min. The mass detector operated in full-scan mode with the mass/charge ratio ranging from m/z 20 to 800.

Entry	Sample	HMF Conversion (%)	Y_{FDCA}^{b} (%)	Y_{HFCA}^{b} (%)
1	$Ce_{0.9}Y_{0.1}O_{2-\delta}$	93	2	13
2	$Ce_{0.9}La_{0.1}O_{2-\delta}$	93	2	15
3	$Ce_{0.9}Mn_{0.1}O_{2-\delta}$	91	-	7
4	$Ce_{0.9}Fe_{0.1}O_{2-\delta}$	90	2	10

Table S1 Screening with other M-doped $Ce_{0.9}M_{0.1}O_{2-\delta}$

^a General conditions: 0.15 M HMF solution in 0.6 M NaOH (6 ml), 0.1 g catalyst, 65 °C, 1.0 MPa O₂. ^b Yield determined by HPLC after reacted for 1 h.

Fig. S6 XRD patterns of samples after reacted for 1h, (a) Au/CeO₂, (b) Au/Ce_{0.9}Bi_{0.1}O_{2- δ}, (c) Au/Ce_{0.8}Bi_{0.2}O_{2- δ} and (d) Au/Ce_{0.5}Bi_{0.5}O_{2- δ}. Right: partial enlarged view of the left.

Fig. S7 XPS Au 4f peak of (a) Au/CeO₂, (b) Au/Ce_{0.9}Bi_{0.1}O_{2- δ}, (c) Au/Ce_{0.8}Bi_{0.2}O_{2- δ} and (d) Au/Ce_{0.5}Bi_{0.5}O_{2- δ} after reacted for 1h.

Fig. S8 HMF conversion and product yields as a function of amount of base in the oxidation of HMF in aqueous solution over Au/Ce_{0.9}Bi_{0.1}O_{2- δ} catalyst (Au : HMF = 3.33×10^{-3} mol/mol, 1.0 MPa O₂, 65 °C, 1 h; HMF: **•**, FDCA: •, HFCA: **•**, FFCA: **•**, FFCA: **•**).

Fig. S9 Product yields as a function of reaction temperature in the oxidation of HMF in aqueous solution over Au/Ce_{0.9}Bi_{0.1}O_{2- δ} catalyst (Au : HMF = 6.67×10^{-3} mol/mol, 4 equiv. NaOH, 1.0 MPa O₂, 0.5 h; FDCA: **•**, HFCA: •).

Fig. S10 Product yields as a function of O₂ pressure in the oxidation of HMF in aqueous solution over Au/Ce_{0.9}Bi_{0.1}O_{2- δ} catalyst (Au : HMF = 6.67×10⁻³ mol/mol, 4 equiv. NaOH, 65 °C, 1 h; FDCA: **•**, HFCA: •).

Fig. S11 Product yields as a function of the relative amounts of HMF and Au in the oxidation of HMF in aqueous solution over Au/Ce_{0.9}Bi_{0.1}O_{2-δ} catalyst (4 equiv. NaOH, 1.0 MPa O₂, 65 °C, 1 h; FDCA: ■, HFCA: ●).