Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Photocatalytic Hydrogen Generation from Water Reduction Using Orchestrated Photosensitizers

Shu-Cheng Yang,^a Gang Chang,^b Guan-Jun Yang,^{*,c} Yan-Jie Wang,^{*,d} and Baizeng Fang^{*,d}

- ^a Department of Environmental Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
- ^b Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
- ^c State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
- ^d Department of Chemical & Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, B.C., Canada V6T 1Z

Email address: <u>ygj@mail.xjtu.edu.cn</u> (G.-J. Yang); Tel.: +86 2982663914 <u>yjwang@chbe.ubc.ca</u> (Y.-J. Wang); <u>bfang@chbe.ubc.ca</u> (B. Fang); Tel.: +1 604-827-3232

Synthesis of Ligand 3

4,4'-dibromo-2,2'-bipyridine (104 mg, 0.33 mmol), 4-vinylphenylboronic acid (148 mg, 1.0 mmol) and sodium carbonate (380 mg) were dissolved in a mixed solvent of tetrahydrofuran (25 mL) and water (3 mL). The mixture was deoxygenated and then tetrakis(triphenylphosphine)palladium(0) (39 mg, 0.03 mmol) was added. The resultant mixture was refluxed at 80 °C under nitrogen protection for 48 h. When cooled, water (50 mL) was added and the two layers were separated. The aqueous layer was extracted with ethyl acetate (3 × 20 mL). All the organic portions were combined, washed with brine (30 mL), dried over anhydrous magnesium sulfate and filtered. The filtrate was collected and the solvent was completely removed. The residue was purified by column chromatography over silica gel using CH₂Cl₂/ethyl acetate (1: 0 to 1: 1) as eluent to give compound **3** as a white solid (65 mg, 55%); mp 233-234 °C. ¹H NMR (400 MHz, CDCl₃) δ 5.34 (d, 2H, J=11.31), 5.85 (d, 2H, J=17.64), 6.74-6.83 (m, 2H), 7.53-7.58 (m, 6H), 7.76-7.78 (m, 4H), and 8.74-8.76 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 114.90, 118.93, 121.42, 126.85, 127.30, 136.14, 137.43, 138.39, 148.83, 149.61, and 156.58. *m/z* [ESI]: 361.2 ([M+H]⁺). Anal. Cal. For C₂₆H₂₀N₂: C, 86.64; H, 5.59; N, 7.77. Found: C, 86.53; H, 5.72; N, 7.91.

Synthesis of 4-Styrenyl-Ir

A iridium dimer $[Ir(ppy)_2Cl]_2$ (ppy = phenylpyridine) (54 mg, 0.05 mmol) and ligand **3** (36 mg, 0.10 mmol) were dissolved in a mixed solvent of CH₂Cl₂/CH₃OH (10 mL/6 mL) and stirred at 55 °C under nitrogen protection for 16 h. When cooled, the solvent was removed under reduced pressure and then redissolved in 10 mL of CH₃OH. KPF₆ (120 mg, 0.65 mmol) in 7 mL H₂O was added to get precipitation, which was filtered and washed subsequently by distilled H₂O (250 mL), CH₃OH (10 mL) and diethyl ether (250 mL). The purification was performed through recrystallization by vapor diffusion of CH₂Cl₂/diethyl ether to give **4-Styrenyl-Ir** as an orange solid (68 mg, 68%). ¹H NMR (400 MHz, DMSO/d₆) δ 5.41 (d, 2H, J=11.48), 6.03 (d, 2H, J=17.64), 6.23 (dd, 2H, J=7.56&0.92), 6.82-6.89 (m, 2H), 6.93 (dt, 2H, J=7.40&1.16), 7.04 (dt, 2H, J=7.56&1.16), 7.20 (dt, 2H, J=5.92&1.28), 7.72-7.74 (m, 4H), 7.76-7.78 (m, 2H), 7.89 (d, 2H, J=5.88), 7.93-7.98 (m, 4H), 8.08-8.10 (m, 6H), 8.29 (d, 2H, J=4.83), and 9.36 (s, 2H). ¹³C NMR (100 MHz, DMSO/d₆) δ 116.46, 120.05, 122.15, 122.26, 124.01, 125.11, 125.54, 126.95, 128.03, 130.27, 131.08, 134.43, 135.76, 138.77, 139.34, 143.86, 149.08, 149.47, 149.86, 150.86, 156.01, and 166.85. *m/z* [ESI]: 861.1 ([M-PF₆]⁺). Anal. Cal. For C₄₈H₃₆F₆IrN₄P: C, 57.31; H, 3.61; N, 5.57. Found: C, 57.54; H, 3.42; N, 5.80.

Synthesis of Ligand 5

5-bromo-2-(pyridin-2-yl)pyridine (235 mg, 1.0 mmol), 4-styrenylphenylboronic acid (222 mg, 1.5 mmol) and sodium carbonate (420 mg) were dissolved in a mixed solvent of tetrahydrofuran (25 mL) and water (3 mL). The mixture was deoxygenated and then tetrakis(triphenylphosphine)palladium(0) (116 mg, 0.10 mmol) was added. The resultant mixture was refluxed at 80°C under nitrogen protection for 48 h. When cooled, water (50 mL) was added and the two layers were separated. The aqueous layer was extracted with ethyl acetate (3×20 mL). All the organic portions were combined, washed with brine (30 mL), dried over anhydrous magnesium sulfate and filtered. The filtrate was collected and the solvent was completely removed. The residue was purified by column chromatography over silica gel using CH₂Cl₂/ethyl acetate (1:0 to 1:1) as eluent to give compound **5** as a white solid (180 mg, 70%); mp 112-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 5.32 (d, 1H, J=10.84), 5.83 (d, 1H, J=17.60), 6.74-6.81 (m, 1H), 7.26-7.33 (m, 1H), 7.52-7.54 (m, 2H), 7.62-7.64 (m, 2H), 7.83 (dt, 1H, J= 7.64&1.76), 8.02 (dd, 1H, J=8.28&2.32), 8.43-8.48 (m, 2H), 8.69-8.71 (m, 1H), and 8.93 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 114.55, 120.95, 121.01, 123.65, 126.91, 127.10, 134.91, 135.94, 136.12, 136.81, 136.90, 137.48, 147.42, 149.21, 154.88, 155.82. *m/z* [ESI]: 259.1 ([M+H]⁺). Anal. Cal. For C₁₈H₁₄N₂: C, 83.69; H, 5.46; N, 10.84. Found: C, 83.77; H, 5.66; N, 10.91.

The Synthesis of 3-Styrenyl-Ir

The iridium dimer [Ir(ppy)₂Cl]₂ (107 mg, 0.10 mmol) and ligand **5** (52 mg, 0.20 mmol) were dissolved in a mixed solvent of CH₂Cl₂/CH₃OH (10 mL/6 mL) and stirred at 55 °C under nitrogen protection for 16 h. When cooled, the solvent was removed under reduced pressure and then re-dissolved in 10 mL of CH₃OH. KPF₆ (240 mg, 1.30 mmol) in 7 mL H₂O was added to form precipitation, which was filtered and washed subsequently by distilled H₂O (250 mL), CH₃OH (10 mL) and diethyl ether (250 mL). The purification was performed through recrystallization by vapor diffusion of CH₂Cl₂/diethyl ether to give **3-Styrenyl-Ir** as an orange solid (160 mg, 89%). ¹H NMR (400 MHz, DMSO/d₆) δ 5.33 (d, 1H, J=11.08), 5.95 (d, 1H, J=17.72), 6.24-6.30 (m, 2H), 6.72-6.79 (m, 1H), 6.90-6.98 (m, 2H), 7.02-7.09 (m, 2H), 7.14-7.20 (m, 2H), 7.37-7.39 (m, 2H), 7.56-7.58 (m, 2H), 7.67 (d, 1H, J=5.24), 7.70 (t, 1H, J=6.64), 7.82 (d, 1H, J=5.32), 7.89-7.96 (m, 5H), 8.04 (d, 1H, J=2.12), 8.26-8.30 (m, 3H), 8.60 (dd, 1H, t=8.52&2.08), 8.92 (s, 1H), and 8.94 (s, 1H). ¹³C NMR (100 MHz, DMSO/d₆) δ 116.15, 119.96, 120.10, 122.27, 122.40, 123.98, 124.06, 125.04, 126.77, 127.14, 128.57, 130.20, 130.29, 131.17, 133.42, 135.54, 136.74, 138.44, 138.73, 138.78, 138.86, 139.66, 143.85, 143.91, 146.93, 148.94, 149.36, 149.85, 150.24, 150.62, 153.98, 155.09, 166.68, and 166.71. *m/z* [ESI]: 759.5 ([M-PF₆]⁺). Anal. Cal. For C₄₀H₃₀C₆IrN₄P: C, 53.15; H, 3.35; N, 6.20; Found: C, 53.55; H, 3.63; N, 6.41.

Figure S1. CV plots for the as-synthesized 4-Me-Ir, 4-Styrenyl-Ir and 3-Styrenyl-Ir.