Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2014

Supplementary Information for:

Isotopic Probes for Ruthenium-Catalyzed Olefin Metathesis

Justin A.M. Lummiss, Adrian G.G. Botti, Deryn E. Fogg*

Center for Catalysis Research & Innovation, Chemistry Department, University of Ottawa,

Ottawa, ON, Canada, K1N 6N5

Table of Contents

S1. Handling of isotopically-labelled ethylene	S2
S2. Improved gram-scale synthesis of RuCl ₂ (H ₂ IMes)(PCy ₃)(=CH ₂), GIIm	S2
S3. Representative NMR spectra	S3
S4. References.	S11

S1. Handling of isotopically-labelled ethylene

A needle valve was installed on lecture bottles of labelled gases to permit controlled dispensing of small gas volumes. Once the bottle pressure dropped below 1 atm (14.7±1 psi local value), the lecture bottle was warmed in a hot-water bath to increase the pressure to the 1 atm level required for continued dispensing. Labelled gases were transferred to evacuated flasks via a delivery system of minimum volume (Figure S1).

Figure S1. Transferring isotopically-labelled ethylene from lecture bottle to reaction flask using a T-valve connected to an oil bubbler. Load position: T-valve open to flask and lecture bottle; Pressure check position: T-valve open to oil bubbler.

S2. Improved gram-scale synthesis of RuCl₂(H₂IMes)(PCy₃)(=CH₂), GIIm

Note: The original route¹ was carried out on 150 mg scale. The route below scales this up ca. fivefold, and improves purity by extracting the phosphonium chloride byproduct.

In the glovebox, **GIm** (697 mg, 0.933 mmol) of free H₂IMes (380 mg, 1.24 mmol, 1.3 equiv; slight excess used to compensate for trace water in the solvent), and 45 mL C₆H₆ was placed in a 100 mL Schlenk tube. The Schlenk tube was removed to a vacuum line and heated to 60 °C for 45 min under Ar. The solution changed colour from pink to yellow-brown within 15 min. The solvent was removed under vacuum to yield a brown-yellow paste, which was washed with cold pentane (3 x 2 mL; glovebox) to yield yellow **GIm**. The yellow powder was washed with degassed H₂O (3 x 2 mL; aggressive stirring of the suspension), followed by acetone (3 x 2 mL; removes residual water and transforms the tacky solid to a fine yellow powder), the pentane (3 x 2 mL; removes residual PCy₃). Yield 578 mg (80 %).

S3. Representative NMR spectra

Figure S2. NMR spectra for RuCl₂(PCy₃)₂(=¹³CHPh), ***GI**: (a) ¹H NMR spectrum (300.1 MHz, C₆D₆). (b) ³¹P{¹H} NMR spectrum (121.5 MHz, C₆D₆). (c) ¹³C{¹H} NMR spectrum (75.5 MHz, C₆D₆).

Figure S3. NMR spectra for RuCl₂(PCy₃)₂(=CDPh), ^DGI: (a) ¹H NMR spectrum (300.1 MHz, C₆D₆); <5 min acquisition. (b) ³¹P{¹H} NMR spectrum (121.5 MHz, C₆D₆); ca. 10 min acquisition. (c) ²H NMR spectrum (46.1 MHz, C₆H₆); >1 h acquisition. Note breadth of the downfield ²H signal for ^DGI, relative to that for solvent (reflecting the fast relaxation discussed in the text). Both acquisition times and linewidths underscore the advantages associated with ¹³C NMR analysis of appropriately enriched isotopologues.

Figure S4. NMR spectra for $RuCl_2(PCy_3)(H_2IMes)(={}^{13}CHPh)$, ***GII**: (a) ¹H NMR spectrum (300.1 MHz, C₆D₆). (b) ${}^{31}P{}^{1}H{}$ NMR spectrum (121.5 MHz, C₆D₆). (c) ${}^{13}C{}^{1}H{}$ NMR spectrum (75.5 MHz, C₆D₆). The poor resolution of the benzylidene phenyl signals is due to swiveling of this group.^{2,3}

Figure S5. NMR spectra for $RuCl_2(PCy_3)(H_2IMes)(=CDPh)$, ^{**D**}**GH**: (a) ¹H NMR spectrum (300.1 MHz, C₆D₆). (b) ³¹P{¹H} NMR spectrum (121.5 MHz, C₆D₆). (c) ²H (46.1 MHz, C₆H₆).

Figure S6. NMR spectra for $\text{RuCl}_2(\text{PCy}_3)_2(=^{13}\text{CH}_2)$, ***GIm**: (a) ¹H NMR spectrum (300.1 MHz, C₆D₆). (b) ³¹P{¹H} NMR spectrum (121.5 MHz, C₆D₆). (c) ¹³C{¹H} NMR spectrum (75.5 MHz, C₆D₆).

Figure S7. NMR spectra for $RuCl_2(PCy_3)_2(=CD_2)$, ^{**D**}**GIm**: (a) ¹H NMR spectrum (300.1 MHz, C₆D₆). (b) ³¹P{¹H} NMR spectrum (121.5 MHz, C₆D₆). (c) ²H (46.1 MHz, C₆H₆).

Figure S8. NMR spectra for $RuCl_2(PCy_3)(H_2IMes)(={}^{13}CH_2)$, ***GIIm**: (a) ¹H NMR spectrum (300.1 MHz, C₆D₆). (b) ${}^{31}P{}^{1}H{}$ NMR spectrum (121.5 MHz, C₆D₆). (c) ${}^{13}C{}^{1}H{}$ NMR spectrum (75.5 MHz, C₆D₆).

Figure S9. NMR spectra for $RuCl_2(PCy_3)(H_2IMes)(=CD_2)$, ^{**D**}**GIIm**: (a) ¹H NMR spectrum (300.1 MHz, C₆D₆). (b) ³¹P{¹H} NMR spectrum (121.5 MHz, C₆D₆). (c) ²H (46.1 MHz, C₆H₆).

S4. References.

- 1. J. A. M. Lummiss, N. J. Beach, J. C. Smith and D. E. Fogg, *Catal. Sci. Technol.*, 2012, 2, 1630–1632.
- 2. M. M. Gallagher, A. D. Rooney and J. J. Rooney, *J. Organomet. Chem.*, 2008, 693, 1252–1260.
- 3. M. W. Kotyk, S. I. Gorelsky, J. C. Conrad, C. Carra and D. E. Fogg, *Organometallics*, 2009, 28, 5424–5431.