Electronic Supplementary Information

for

Synergistic effects of Ni and Cu nanoparticles supported on TiO₂ and SiO₂ on photocatalytic H₂ evolution with an electron donor-acceptor linked molecule

Yusuke Yamada,*^a Shinya Shikano,^a Tomoki Akita^b and Shunichi Fukuzumi^{*a}

^aDepartment of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan ^bNational Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan

Fig. S1 (a) Time courses of H₂ evolution by photoirradiation ($\lambda > 340$ nm) of a mixed suspension (2.0 mL) of a phthalate buffer (pH 4.5) and MeCN [1:1 (v/v)] containing NADH (1.0 × 10⁻³ M) and 3 wt% Ni-Cu/TiO₂ (100 mg L⁻¹) in the presence (red circle) and absence (black square) of QuPh⁺–NA (8.8 × 10⁻⁴ M). (b) Time courses of H₂ evolution by photoirradiation ($\lambda > 340$ nm) of a mixed suspension (2.0 mL) of a phthalate buffer (pH 4.5) and MeCN [1:1 (v/v)] containing QuPh⁺–NA (8.8 × 10⁻⁴ M), NADH (1.0 × 10⁻³ M) and 3 wt% Ni-Cu/TiO₂ (100 mg L⁻¹) for 15 min. No H₂ evolution was observed in the dark (after 15 min).

Fig. S2 Powder X-ray diffraction patterns of 3 wt% Ni-Cu/TiO₂ [Ni/Cu = 1:1 (w/w)] after the photocatalytic H₂ evolution. The peaks with * originate from TiO₂ (anatase).

Fig. S3 Volume of evolved H₂ in the repetitive experiments at each run. H₂ evolution was carried out by photoirradiation ($\lambda > 340$ nm) of a mixed suspension (2.0 mL) of a phthalate buffer (pH 4.5) and MeCN [1:1 (v/v)] containing QuPh⁺–NA (1.1 × 10⁻⁴ M), 3 wt% Ni-Cu/TiO₂ (100 mg L⁻¹) and NADH (1.0 × 10⁻³ M). A small potion of an aqueous solution of concentrated NADH was added to the reaction after ceasing H₂ evolution. The concentration of NADH was 1.0 × 10⁻³ M in a starting solution at each run.

Fig. S4 Time courses of H₂ evolution by photoirradiation ($\lambda > 340$ nm) of a mixed suspension (2.0 mL) of a phthalate buffer (pH 4.5) and MeCN [1:1 (v/v)] containing QuPh⁺–NA (8.8 × 10⁻⁴ M), NADH (1.0 × 10⁻³ M) and (a) 3 wt% Ni/TiO₂ (red circle) and Cu/TiO₂ (blue square) and (b) 3 wt% Ni/SiO₂ (red circle) and Cu/SiO₂ (blue square) (100 mg L⁻¹).

Fig. S5 Powder X-ray diffraction patterns of 3 wt% Ni-Cu/MO_x. [MO_x = (a) SiO₂, (b) SiO₂-Al₂O₃ and (c) CeO₂]. The peaks with * originate from MOx.

Fig. S6 Diffuse reflectance UV-vis spectra of (a) 3 wt% Ni/TiO₂ (red) and 3 wt% Cu/TiO₂ (blue) and (b) 3 wt% Ni/SiO₂ (red) and 3 wt% Cu/SiO₂ (blue) prepared by co-impregnation.

Fig. S7 TEM images of 3 wt% Ni-Cu/SiO₂ with different morphologies and surface areas. (a) unshaped (low surface area), (b) spherical and (c) unshaped (high surface area).

Fig. S8 Time course of H₂ evolution by photoirradiation ($\lambda > 340$ nm) of a mixed suspension (2.0 mL) of a phthalate buffer (pH 4.5) and MeCN [1:1 (v/v)] containing QuPh⁺–NA (8.8 × 10⁻⁴ M), NADH (1.0 × 10⁻³ M) and 3 wt% Ni-Cu/SiO₂ (100 mg L⁻¹) with various Ni/(Ni+Cu) ratio prepared by a co-impregnation method. [(a) SiO₂ (spherical) and (b) SiO₂ (unshaped, HS) with Ni/(Ni+Cu) = 0% (plus), 25% (green diamond), 33% (blue square), 50% (red circle), 67% (purple triangle), 75% (pink inverse triangle) and 100% (cross)].

Figure S9. Powder X-ray diffraction patterns of TiO₂ (a) anatase with high surface area, (b) rutile high surface area and (c) rutile low surface area.