Electronic Supporting Information

Synergistic catalysis-induced ring-opening reactions of 2-substituted

3,4-dihydropyrans with α -oxoketene dithioacetals

Changhui Liu,^a Amir Taheri,^a Bingbing Lai^a and Yanlong Gu^{a,b}*

^a: Key Laboratory for Large-Format Battery, Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu road, Hongshan District, Wuhan 430074, China.

Fax: (0)86-(0)27-87 54 45 32, E-mail: klgyl@hust.edu.cn

^b: State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Lanzhou, 730000 (P.R. China)

Table of Content

1.	General remarks.	2
2.	General procedure for the synthesis of 2-substituted 3,4-dihydropyrans	2
3.	General procedure for the synthesis of ketene dithioacetals	3
4.	A typical procedure for ring-opening reaction of 2-aryl-3,4-dihydropyrans	3
5.	A typical procedure for ring-opening reaction of 2-butoxy-3,4-dihydropyrans	4
6.	Catalytic mechanism analysis.	4
7.	Characterization data of new compounds	6
8.	Molecular calculation of 2b	7
9.	¹ H NMR and ¹³ C NMR spectra	25

1. General remarks.

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without purification. Acetophenone, 1-(4-nitrophenyl)ethanone, methyl 3-oxobutanoate, pentane-2,4-dione, ethyl 3-oxobutanoate, carbon disulfide, 1,2-dibromoethane, iodomethane, formalin were purchased from Sinopharm Chemical Reagent Co., Ltd. 1-(4-Chlorophenyl)ethanone, potassium 2-methylpropan-2-olate were purchased from Accela ChemBio Co.. Ltd. 1-(4-Fluorophenyl)ethanone, 1-(p-tolyl)ethanone were purchased from Aladdin Industrial Corporation. 1-(4-Iodophenyl)ethanone, methvl 4-acetylbenzoate, 4,4-dimethyl-3-oxopentanenitrile were purchased from Energy Chemical Company. 1-methyl-4-vinylbenzene, 1-(tert-butyl)-4-vinylbenzene, 2-methoxyethyl 3-oxobutanoate, ethyl 3-(4-methoxyphenyl)-3-oxopropanoate were purchased from Alfa Aesar Chemical Company. 1-Methoxy-4-vinylbenzene was purchased from Tokyo Industry Co.. Ltd. 1-(4-Methoxyphenyl)ethanone was purchased from Shanghai Feixiang Chemistry Company.¹H and ¹³C NMR spectra were recorded on a Bruker AV-400. Chemical shifts are expressed in ppm relative to Me₄Si in CDCl₃. IR spectra were recorded on a FT-IR Bruker (EOUINOX 55) using KBr technology. High-resolution mass spectra (HRMS) were obtained on Brüker Bruker Compass DataAnalysis 4.0.

2. General procedure for the synthesis of 2-substituted 3,4-dihydropyrans¹.

The reactions were conducted in a 250 mL of round bottomed flask equipped with magnetic stirring. In the reaction, styrene derivative or 1-(vinyloxy)butane (20.0 mmol) was mixed with methyl 1,3-dicarbonyl compound (40.0 mmol) and formalin (4.05 g, 50.0 mmol, 37%). The mixture was stirred for 6 to 12 hours at 80 °C. After reaction, the mixture was cooled to room temperature and then water (20 mL) was added. The reaction liquid was extracted with ethyl acetate (3×20 mL). The organic extracts were combined then washed with brine (1×40 mL), After drying with anhydrous sodium sulfate, the organic solution was concentrated under vacuum to obtain the crude product, which was finally purified by silica gel column chromatography (eluting solution: petroleum ether / ethyl acetate = 20 / 1 (v/v)). The yields of dihydropyrans were listed in Table **S1**.

Entry	Molecular structure		Yield/%
1	OMe	1a	85
2	O CEt	1b	80
3	OMe OMe	1c	82

 Table S1. The yield of different dihydropyans.

4	e contraction of the second se	1d	76
5	CN CN	1e	55
6	Meo	1f	88
7	Meo	1g	84
8	MeO OK	1h	85
9	OMe	1i	66
10		4 a	75
11	"BuO O O	4b	77
12	nBuO O	4c	76
13	"BuO O	4d	77
14	"BuO O	4e	76

3. General procedure for the synthesis of ketene dithioacetals²

All reactions were conducted in a 250 mL of three-necked round bottomed flask equipped with magnetic stirring. To a stirred suspension of potassium *tert*-butoxide (4.48 g, 40 mmol) in dry THF (10 mL) at 0 °C, a dry THF solution (10 mL) of ketone (10 mmol) and carbon disulfide (12 mmol, 0.913 g, 0.73 mL) was dropwise added. The reaction mixture was vigorously stirred at 0 °C for 90 minutes. To this suspension, a dry THF solution (5 mL) of methyl iodide or 1,2-dibromoethane (22 mmol) was added dropwise within 10 minutes at 0 °C. The reaction mixture was stirred for 3 hours. After completion of the reaction (monitored by TLC), the mixture was poured into saturated aqueous solution of ammonium chloride with crushed ice. Then, the aqueous solution was extracted with ethyl acetate (3 × 25 mL). The combined organic extracts were washed with brine (1×25 mL), dried, and then concentrated under vacuum to obtain the crude product. Pure product was obtained by silica gel column chromatography (eluting solution: petroleum ether / ethyl acetate = 10 / 1 (v/v)). The yields of ketene dithioacetals were listed in Table **S2**.

Entry	Molecular str	ructure	Yield/%
1	C S S	2a	55
2	O SMe SMe	2b	68
3	L L L S	2c	75
4	Meo	2d	65
5	F S S	2e	68
6	a s s	2f	57
7	P S → P → S →	2g	48

Table S2. The yield of different ketene dithioacetals.

8	O ₂ N	2h	20
9	MeO ₂ C	2i	66

4. A typical procedure for ring-opening reaction of 2-aryl-3,4-dihydropyrans

All reactions were conducted in a 10 mL of V-type flask equipped with triangle magnetic stirring. In a typical reaction, ketene dithioacetal (0.24 mmol) was mixed with dihydropyran (0.20 mmol), CuBr₂ (5 mol %) and MnCl₂ 4H₂O (15 mol %) in nitromethane (1.0 mL). The mixture was then stirred at 50 °C for 10 hours. After reaction, the mixture was cooled to room temperature, and the product was obtained by isolation with preparative TLC (eluting solution: petroleum ether / ethyl acetate = 5 / 1 (v/v)). Tests for substrate scope were all performed with an analogous procedure.

Table S3. Ring-opening Reaction of 1a with 2a under different catalysts

entry ^[a]	catalyst	time (h)	Yield (%)	
1	Zn(OTf) ₂	10	nr	
2	In(OTf) ₃	2.5	mess	
3	I_2	2.5	mess	
4	$Sc(OTf)_2$	2.5	mess	
5	FeCl ₃	10	35	
6	FeBr ₃	10	trace	
7	TsOH H ₂ O	10	15	
8	LiBr H ₂ O	10	NR	
9	HBr	10	NR	

^[a] The reaction was performed in 0.20 mmol scale in 1.0 ml of nitromethane at 50 $^{\circ}$ C , catalyst loading is 20 mol %.

5. A typical procedure for ring-opening reaction of 2-butoxy-3,4-dihydropyrans

All reactions were conducted in a 10 mL of V-type flask equipped with triangle magnetic stirring. In a typical reaction, ketene dithioacetal (0.24 mmol) was mixed with dihydropyran (0.20 mmol), CuBr₂ (5 mol %) and MnCl₂ 4H₂O (15 mol %) in nitromethane (1.0 mL). The mixture was then stirred at 80 °C for 1 h. After reaction, the mixture was cooled to room temperature, and the product was obtained by isolation with preparative TLC (eluting solution: petroleum ether / ethyl acetate = 3 / 1 (v/v)). Tests for substrate scope were all performed with an analogous procedure.

6. Catalytic mechanism analysis

Figure S1. HRMS analysis of a nitromethane- d_3 solution of **2b** treated with CuBr₂ (the reaction was conducted at 50 °C, 0.5 h).

Figure S2. HRMS spectra of 2b. (1) without catalyst; (2) with CuBr₂.

Figure S3 In-situ FTIR analysis of 2b (treated 2b with $CuBr_2$ in DCE under 50 °C for 30 minutes).

Figure S4. UV-Vis spectra of Cu(II) salts and TBAB.

Figure S5. HRMS spectra of **2b.** (1) **2b** + CuBr₂; (2) **2b** + Cu(OTf)₂ (peak of 285.9525 can be ascribed to the formation of $[(\mathbf{I}) - \mathbf{H}]^+$)

7. Characterization data of new compounds

2-Methoxyethyl 6-methyl-2-(*p*-tolyl)-3,4-dihydro-2H-pyran-5-carboxylate (**1c**): Colorless oil, ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.21 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 4.82 (d, *J* = 10.2 Hz, 1H), 4.28 – 4.24 (m, 2H), 3.64 – 3.60 (m, 2H), 3.38 (s, 3H), 2.53 – 2.39 (m, 2H), 2.34 (s, 3H), 2.32 (s, 3H), 2.07 (ddd, *J* = 10.5, 5.5, 2.7 Hz, 1H), 1.91 – 1.79 ppm (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ = 168.4, 165.4, 137.8, 137.7, 129.2, 125.9, 101.2, 78.1, 70.8, 62.8, 58.9, 29.1, 21.9, 21.1, 20.4 ppm. IR (KBr) *v*: 2925, 2884, 1705, 1623, 1516, 1380, 1269, 1206, 1133, 1079, 1017, 813, 760 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₇H₂₂NaO₄, [M+Na]⁺ 313.1416, found 313.1424.

6-(*tert*-Butyl)-2-(*p*-tolyl)-3,4-dihydro-2H-pyran-5-carbonitrile (**1e**): Colorless oil, ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.19 (s, 4H), 4.82 (dd, *J* = 10.4, 2.1 Hz, 1H), 2.36 (s, 3H), 1.37 (s,

2H), 1.34 (s, 9H), 1.16 ppm (s, 2H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 175.5, 137.9, 137.3, 129.3, 125.5, 120.8, 79.5, 78.3, 38.3, 28.7, 26.3, 25.1, 21.2 ppm. IR (KBr) *v*: 2965, 2876, 2202, 1705, 1608, 1516, 1479, 1398, 1368, 1274, 1188, 1079, 1041, 814 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₇H₂₁NNaO, [M+Na]⁺ 278.1521, found 278.1523.

Methyl-2-(4-(tert-butyl)phenyl)-6-methyl-3,4-dihydro-2H-pyran-5-carboxylate (**1i**): Colorless oil, ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.40 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 8.3 Hz, 2H), 4.85 (dd, *J* = 10.3, 2.1 Hz, 1H), 3.71 (s, 3H), 2.50 – 2.37 (m, 2H), 2.31 (s, 3H), 2.14 – 2.07 (m, 1H), 1.93 – 1.81 (m, 1H), 1.32 ppm (s, 9H). ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ = 169.0, 165.3, 151.0, 137.7, 125.7, 125.5, 101.2, 78.1, 51.0, 34.6, 31.3, 29.0, 21.9, 20.4. IR (KBr) *v*: 2956, 2867, 1709, 1624, 1513, 1434, 1381, 1272, 1209, 1186, 1083, 1017, 956, 834, 765, 576 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₈H₂₄NaO₃, [M+Na]⁺ 311.1623, found 311.1633.

2-(1,3-dithiolan-2-ylidene)-1-(4-iodophenyl)ethanone (**2g**): Light yellow solid, mp = 165-167 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.80 (d, *J* = 8.3 Hz, 2H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.28 (s, 1H), 3.49 (t, *J* = 6.1 Hz, 2H), 3.42 – 3.37 ppm (m, 2H). ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ = 185.1, 169.3, 137.8, 129.4, 107.8, 99.6, 39.0, 35.5 ppm. IR (KBr) *v*: 2917, 1608, 1578, 1549, 1488, 1224, 1053, 999, 965, 778 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₁H₁₀IOS₂, [M+H]⁺ 348.9218, found 348.9223.

Methyl-4-(2-(1,3-dithiolan-2-ylidene)acetyl)benzoate (**2i**): Light yellow solid, mp = 148-150 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 8.11 (d, *J* = 8.3 Hz, 2H), 8.00 (d, *J* = 8.3 Hz, 2H), 7.36 (s, 1H), 3.94 (s, 3H), 3.54 – 3.49 (m, 2H), 3.45 – 3.39 ppm (m, 2H). ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ = 185.2, 169.9, 166.5, 141.8, 129.8, 127.8, 108.2, 52.4, 39.0, 35.6 ppm. IR (KBr) *v*: 2922, 1718, 1596, 1560, 1507, 1477, 1438, 1280, 1222, 1108, 969, 772 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₃H₁₃O₃S₂, [M+H]⁺ 281.0306, found 281.0310.

Allyl 2-butoxy-6-methyl-3,4-dihydro-2H-pyran-5-carboxylate (**4d**): Colorless oil, ¹H NMR (600 MHz, CDCl₃, TMS, 25 °C): $\delta = 6.03 - 5.89$ (m, 1H), 5.32 (dd, J = 17.2, 1.4, 1H), 5.25 - 5.18 (m, 1H), 5.07 - 4.99 (m, 1H), 4.65 - 4.58 (m, 2H), 3.86 - 3.75 (m, 1H), 3.58 - 3.48 (m, 1H), 2.46 - 2.30 (m, 2H), 2.25 (d, J = 1.2 Hz, 3H), 1.91 - 1.82 (m, 1H), 1.81 - 1.72 (m, 1H), 1.61 - 1.49 (m, 2H), 1.40 - 1.31 (m, 2H), 0.95 - 0.87 ppm (m, 3H).¹³C NMR (151 MHz, CDCl₃, 25 °C): $\delta = 167.9, 162.2, 133.0, 117.2, 101.8, 98.0, 68.5, 64.4, 31.7, 26.1, 20.0, 19.2, 17.8, 13.8 ppm. IR (KBr)$ *v*: 2959, 2935, 2873, 1709, 1629, 1456, 1380, 1337, 1270, 1119, 1059, 1011, 933, 769 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₃H₂₀NaO₄, [M+Na]⁺ 277.1416, found 277.1422.

Prop-2-yn-1-yl 2-butoxy-6-methyl-3,4-dihydro-2H-pyran-5-carboxylate (**4e**): Colorless oil, ¹H NMR (600 MHz, CDCl₃, TMS, 25 °C): $\delta = 5.04$ (d, J = 2.7 Hz, 1H), 4.71 (d, J = 1.0 Hz, 1H), 3.89 – 3.77 (m, 1H), 3.70 (s, 1H), 3.53 (dt, J = 10.9, 4.1 Hz, 1H), 2.45 (t, J = 2.2 Hz, 1H), 2.44 – 2.30 (m, 2H), 2.25 (d, J = 11.3 Hz, 3H), 1.94 – 1.82 (m, 1H), 1.76 (dt, J = 10.6, 6.9 Hz, 1H), 1.56 (dd, J = 13.8, 7.0 Hz, 2H), 1.36 (dt, J = 14.7, 7.3 Hz, 2H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃, 25 °C): $\delta = 167.3$, 163.2, 101.8, 101.2, 98.1, 97.9, 78.5, 74.1, 68.5, 68.4, 51.2, 51.0, 31.7, 31.6, 26.1, 26.0, 20.1, 19.9, 19.2, 17.8, 17.7, 13.9 ppm. IR (KBr) v: 3293, 2959, 2936, 2873, 1711, 1628, 1435, 1380, 1339, 1273, 1119, 1061, 1011, 860, 769 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₃H₁₈NaO₄, [M+Na]⁺ 275.1529, found 275.2755.

8. Molecular calculation of 2b

The molecular structure of **2b** was optimized by minimizing the energy of its structure without any symmetry constraints. To achieve the most stable structure, the study was implemented over GAUSSIAN 98 code using the hybrid density functional approach (DFT) with B3LYP, PBEPBE and ab inito theory with HF methods, employed 6-311++g**, 6-31+g* and 3-21+g basis sets, Figure S6. The structural optimization of 2b showed that all of the carbon, oxygen and sulfur atoms as well as hydrogen in the aromatic ring are in the same surface, indicating the existence of a conjugated system (Figure S7). Vibrational frequency calculation at B3LYP/6-31+g* level of the geometry optimization has verified the electron delocalization of the conjugate system of 2b (contour plat at HOMO orbital of **2b**, Figure S8). It was also found that there are strong hydrogen bond interactions around H9, which include CH9-O and CH9-S4 and the pseudo-bond lengths are 2.152 and 2.379 Å respectively. The van-der Waals radiuses of Hydrogen, Oxygen and Sulfur atoms are 1.20, 1.52 and 1.80 Å respectively. Both of the pseudo-bond lengths are less than the sum of van-der Waals radiuses of each atom pair (2.72 Å for H + O, and 3.00 Å for H + S). Additionally, the molecular structure was also affected by hydrogen bond between CH20 and S5, which has a pseudo-bond length of 2.809 Å. It should be noted however that H9 rotated to out of the plate, and the torsion angel of O6-C1-C2-H9 is 33.81°. In the molecule, the distance between O6 and S4 is 4.294 Å. Considering the fact that the sum of van-der Waals radius of Hydrogen, Oxygen and Sulfur atoms is 5.72 Å, we therefore deduced that the molecule of 2b was characterized by a heavy space hindrance, which is responsible for the orientation of the H9. To scrutinize the effects of molecular configuration on its energy, the torsion angle of S5-C3-C2-C1 is changed to eleven different values, then the optimal structure, S1-S11, was computed with B3LYP/6-31+g* level of theory, Figure S9. The obtained results manifested that the conjugated system played a critical role to stabilize the structure of **2b**.

Figure S6. Energy surfaces (Hartree) of **2b** optimized at B3LYP, PBEPBE and HF methods of theories, employed 6-311++g**, 6-31+g* and 3-21+g basis sets

Figure S7. Numbering of **2b** structure optimized by B3LYP/6-311++g** level of theory and H-bond interactions, CH/o and CH/s

Figure S8. HOMO orbital contour plots of **2b** shows electron delocalization of conjugate system, green the negative and red the positive interaction

Figure S9. Energy surfaces (Hartree) of **S1-S11** conformations by changing torsion angle of **S5-C3-C2-C1** to 11 different values (optimized at B3LYP/6-31+g* level)

.....

xyz coordinates calculated according to the methods and basis sets of the DFT and ab inito theories for the structure of S studied in this work .

B3LYP/6-311++G**

S (*C1*) Hf= -1297.9632966

С	1.04947200	-1.34979100	-0.00772700
С	-0.28146300	-0.77454800	-0.00642000
С	-1.48342600	-0.25409900	-0.00581800
S	-2.92001700	-1.32136300	-0.01599900
S	-1.68935300	1.52386700	0.00538300
0	1.19041100	-2.56230100	-0.01059400
С	-4.40539300	-0.32296800	-0.01219600
С	-3.43374600	1.92216000	0.00431300
Н	-0.63460400	-1.59187800	0.58701100
Н	-5.26416400	-0.96122800	-0.01828400
Н	-4.41826000	0.30056500	-0.88164400
Н	-4.42179300	0.28865300	0.86561400
Н	-4.00601400	1.01808000	-0.00280800
Н	-3.66734800	2.49900600	-0.86607600
Н	-3.67103000	2.48757200	0.88118500
С	2.28587000	-0.43168700	-0.00554800
С	2.12553600	0.95422700	-0.00227100
С	3.56598700	-0.98562400	-0.00674000
С	3.24512300	1.78593800	-0.00086800
Н	1.11618300	1.39063000	-0.00210900
С	4.68601900	-0.15380000	-0.00434200
Н	3.69253700	-2.07791900	-0.00914300
С	4.52580100	1.23179000	-0.00154400
Н	3.11882500	2.87834000	0.00108200
Н	5.69521200	-0.59084000	-0.00486700
Н	5.40840600	1.88776600	-0.00037900

B3LYP/6-31+G*

S (C1)

HF= -1297.7874751			
C	1.04947200	-1.34979100	-0.00772700
С	-0.28146300	-0.77454800	-0.00642000
С	-1.48342600	-0.25409900	-0.00581800
S	-2.92001700	-1.32136300	-0.01599900
S	-1.68935300	1.52386700	0.00538300
0	1.19041100	-2.56230100	-0.01059400
С	-4.40539300	-0.32296800	-0.01219600
С	-3.43374600	1.92216000	0.00431300

Н	-0.63460400	-1.59187800	0.58701100
Н	-5.26416400	-0.96122800	-0.01828400
Н	-4.41826000	0.30056500	-0.88164400
Н	-4.42179300	0.28865300	0.86561400
Н	-4.00601400	1.01808000	-0.00280800
Н	-3.66734800	2.49900600	-0.86607600
Н	-3.67103000	2.48757200	0.88118500
С	2.28587000	-0.43168700	-0.00554800
С	2.12553600	0.95422700	-0.00227100
С	3.56598700	-0.98562400	-0.00674000
С	3.24512300	1.78593800	-0.00086800
Н	1.11618300	1.39063000	-0.00210900
С	4.68601900	-0.15380000	-0.00434200
Н	3.69253700	-2.07791900	-0.00914300
С	4.52580100	1.23179000	-0.00154400
Н	3.11882500	2.87834000	0.00108200
Н	5.69521200	-0.59084000	-0.00486700
Н	5.40840600	1.88776600	-0.00037900

B3LYP/3-21+G

S (<i>C1</i>)			
Hf= -1291.1453931			
C	1.04947200	-1.34979100	-0.00772700
С	-0.28146300	-0.77454800	-0.00642000
С	-1.48342600	-0.25409900	-0.00581800
S	-2.92001700	-1.32136300	-0.01599900
S	-1.68935300	1.52386700	0.00538300
0	1.19041100	-2.56230100	-0.01059400
С	-4.40539300	-0.32296800	-0.01219600
С	-3.43374600	1.92216000	0.00431300
Н	-0.63460400	-1.59187800	0.58701100
Н	-5.26416400	-0.96122800	-0.01828400
Н	-4.41826000	0.30056500	-0.88164400
Н	-4.42179300	0.28865300	0.86561400
Н	-4.00601400	1.01808000	-0.00280800
Н	-3.66734800	2.49900600	-0.86607600
Н	-3.67103000	2.48757200	0.88118500
С	2.28587000	-0.43168700	-0.00554800
С	2.12553600	0.95422700	-0.00227100
С	3.56598700	-0.98562400	-0.00674000
С	3.24512300	1.78593800	-0.00086800
Н	1.11618300	1.39063000	-0.00210900
С	4.68601900	-0.15380000	-0.00434200

Н	3.69253700	-2.07791900	-0.00914300
С	4.52580100	1.23179000	-0.00154400
Н	3.11882500	2.87834000	0.00108200
Н	5.69521200	-0.59084000	-0.00486700
Н	5.40840600	1.88776600	-0.00037900

PBEPBE/6-311++G**

S(*C1*)

Hf= -1296.8141875			
С	1.04947200	-1.34979100	-0.00772700
С	-0.28146300	-0.77454800	-0.00642000
С	-1.48342600	-0.25409900	-0.00581800
S	-2.92001700	-1.32136300	-0.01599900
S	-1.68935300	1.52386700	0.00538300
0	1.19041100	-2.56230100	-0.01059400
С	-4.40539300	-0.32296800	-0.01219600
С	-3.43374600	1.92216000	0.00431300
Н	-0.63460400	-1.59187800	0.58701100
Н	-5.26416400	-0.96122800	-0.01828400
Н	-4.41826000	0.30056500	-0.88164400
Н	-4.42179300	0.28865300	0.86561400
Н	-4.00601400	1.01808000	-0.00280800
Н	-3.66734800	2.49900600	-0.86607600
Н	-3.67103000	2.48757200	0.88118500
С	2.28587000	-0.43168700	-0.00554800
С	2.12553600	0.95422700	-0.00227100
С	3.56598700	-0.98562400	-0.00674000
С	3.24512300	1.78593800	-0.00086800
Н	1.11618300	1.39063000	-0.00210900
С	4.68601900	-0.15380000	-0.00434200
Н	3.69253700	-2.07791900	-0.00914300
С	4.52580100	1.23179000	-0.00154400
Н	3.11882500	2.87834000	0.00108200
Н	5.69521200	-0.59084000	-0.00486700
Н	5.40840600	1.88776600	-0.00037900

S (C1)			
Hf= -1296.7912315			
С	1.04947200	-1.34979100	-0.00772700
С	-0.28146300	-0.77454800	-0.00642000
С	-1.48342600	-0.25409900	-0.00581800

S	-2.92001700	-1.32136300	-0.01599900
S	-1.68935300	1.52386700	0.00538300
0	1.19041100	-2.56230100	-0.01059400
С	-4.40539300	-0.32296800	-0.01219600
С	-3.43374600	1.92216000	0.00431300
Н	-0.63460400	-1.59187800	0.58701100
Н	-5.26416400	-0.96122800	-0.01828400
Н	-4.41826000	0.30056500	-0.88164400
Н	-4.42179300	0.28865300	0.86561400
Н	-4.00601400	1.01808000	-0.00280800
Н	-3.66734800	2.49900600	-0.86607600
Н	-3.67103000	2.48757200	0.88118500
С	2.28587000	-0.43168700	-0.00554800
С	2.12553600	0.95422700	-0.00227100
С	3.56598700	-0.98562400	-0.00674000
С	3.24512300	1.78593800	-0.00086800
Н	1.11618300	1.39063000	-0.00210900
С	4.68601900	-0.15380000	-0.00434200
Н	3.69253700	-2.07791900	-0.00914300
С	4.52580100	1.23179000	-0.00154400
Н	3.11882500	2.87834000	0.00108200
Н	5.69521200	-0.59084000	-0.00486700
Н	5.40840600	1.88776600	-0.00037900

PBEPBE/3-21+G

S (C1)

Hf= -1290.1464107			
C	1.04947200	-1.34979100	-0.00772700
С	-0.28146300	-0.77454800	-0.00642000
С	-1.48342600	-0.25409900	-0.00581800
S	-2.92001700	-1.32136300	-0.01599900
S	-1.68935300	1.52386700	0.00538300
0	1.19041100	-2.56230100	-0.01059400
С	-4.40539300	-0.32296800	-0.01219600
С	-3.43374600	1.92216000	0.00431300
Н	-0.63460400	-1.59187800	0.58701100
Н	-5.26416400	-0.96122800	-0.01828400
Н	-4.41826000	0.30056500	-0.88164400
Н	-4.42179300	0.28865300	0.86561400
Н	-4.00601400	1.01808000	-0.00280800
Н	-3.66734800	2.49900600	-0.86607600
Н	-3.67103000	2.48757200	0.88118500
С	2.28587000	-0.43168700	-0.00554800

С	2.12553600	0.95422700	-0.00227100
С	3.56598700	-0.98562400	-0.00674000
С	3.24512300	1.78593800	-0.00086800
Н	1.11618300	1.39063000	-0.00210900
С	4.68601900	-0.15380000	-0.00434200
Н	3.69253700	-2.07791900	-0.00914300
С	4.52580100	1.23179000	-0.00154400
Н	3.11882500	2.87834000	0.00108200
Н	5.69521200	-0.59084000	-0.00486700
Н	5.40840600	1.88776600	-0.00037900

HF/6-311++G**

S (C1)

HF= -1293.3252412			
С	1.04947200	-1.34979100	-0.00772700
С	-0.28146300	-0.77454800	-0.00642000
С	-1.48342600	-0.25409900	-0.00581800
S	-2.92001700	-1.32136300	-0.01599900
S	-1.68935300	1.52386700	0.00538300
0	1.19041100	-2.56230100	-0.01059400
С	-4.40539300	-0.32296800	-0.01219600
С	-3.43374600	1.92216000	0.00431300
Н	-0.63460400	-1.59187800	0.58701100
Н	-5.26416400	-0.96122800	-0.01828400
Н	-4.41826000	0.30056500	-0.88164400
Н	-4.42179300	0.28865300	0.86561400
Н	-4.00601400	1.01808000	-0.00280800
Н	-3.66734800	2.49900600	-0.86607600
Н	-3.67103000	2.48757200	0.88118500
С	2.28587000	-0.43168700	-0.00554800
С	2.12553600	0.95422700	-0.00227100
С	3.56598700	-0.98562400	-0.00674000
С	3.24512300	1.78593800	-0.00086800
Н	1.11618300	1.39063000	-0.00210900
С	4.68601900	-0.15380000	-0.00434200
Н	3.69253700	-2.07791900	-0.00914300
С	4.52580100	1.23179000	-0.00154400
Н	3.11882500	2.87834000	0.00108200
Н	5.69521200	-0.59084000	-0.00486700
Н	5.40840600	1.88776600	-0.00037900

HF/6-31+G*

S (C1)			
Hf= -1293.1656756			
С	1.04947200	-1.34979100	-0.00772700
С	-0.28146300	-0.77454800	-0.00642000
С	-1.48342600	-0.25409900	-0.00581800
S	-2.92001700	-1.32136300	-0.01599900
S	-1.68935300	1.52386700	0.00538300
0	1.19041100	-2.56230100	-0.01059400
С	-4.40539300	-0.32296800	-0.01219600
С	-3.43374600	1.92216000	0.00431300
Н	-0.63460400	-1.59187800	0.58701100
Н	-5.26416400	-0.96122800	-0.01828400
Н	-4.41826000	0.30056500	-0.88164400
Н	-4.42179300	0.28865300	0.86561400
Н	-4.00601400	1.01808000	-0.00280800
Н	-3.66734800	2.49900600	-0.86607600
Н	-3.67103000	2.48757200	0.88118500
С	2.28587000	-0.43168700	-0.00554800
С	2.12553600	0.95422700	-0.00227100
С	3.56598700	-0.98562400	-0.00674000
С	3.24512300	1.78593800	-0.00086800
Н	1.11618300	1.39063000	-0.00210900
С	4.68601900	-0.15380000	-0.00434200
Н	3.69253700	-2.07791900	-0.00914300
С	4.52580100	1.23179000	-0.00154400
Н	3.11882500	2.87834000	0.00108200
Н	5.69521200	-0.59084000	-0.00486700
Н	5.40840600	1.88776600	-0.00037900

HF/3-21+G

S (C1)

Hf= -1286.5189913			
C	1.04947200	-1.34979100	-0.00772700
С	-0.28146300	-0.77454800	-0.00642000
С	-1.48342600	-0.25409900	-0.00581800
S	-2.92001700	-1.32136300	-0.01599900
S	-1.68935300	1.52386700	0.00538300
0	1.19041100	-2.56230100	-0.01059400
С	-4.40539300	-0.32296800	-0.01219600
С	-3.43374600	1.92216000	0.00431300
Н	-0.63460400	-1.59187800	0.58701100
Н	-5.26416400	-0.96122800	-0.01828400
Н	-4.41826000	0.30056500	-0.88164400

Н	-4.42179300	0.28865300	0.86561400
Н	-4.00601400	1.01808000	-0.00280800
Н	-3.66734800	2.49900600	-0.86607600
Н	-3.67103000	2.48757200	0.88118500
С	2.28587000	-0.43168700	-0.00554800
С	2.12553600	0.95422700	-0.00227100
С	3.56598700	-0.98562400	-0.00674000
С	3.24512300	1.78593800	-0.00086800
Н	1.11618300	1.39063000	-0.00210900
С	4.68601900	-0.15380000	-0.00434200
Н	3.69253700	-2.07791900	-0.00914300
С	4.52580100	1.23179000	-0.00154400
Н	3.11882500	2.87834000	0.00108200
Н	5.69521200	-0.59084000	-0.00486700
Н	5.40840600	1.88776600	-0.00037900

Dihedral angel scan of C1-C2-C3-S5 in eleven conformations calculated with the B3LYP/6-31+G* method and basis set

S1 (*C1*) Hf= -1298.00887574

111 - 1298.00887374			
С	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.47343500
С	1.11290100	0.00000000	2.27050000
S	0.99526200	0.89319900	3.81237300
S	2.66274000	-0.62394600	1.70067700
0	0.97115100	-0.36921800	-0.66302300
С	1.43916500	-0.37275900	5.06910400
С	3.91916400	0.33032300	2.63063000
Н	-0.91140600	0.31976100	1.96426700
Н	0.65855600	-1.13303200	5.13013900
Н	1.50988500	0.15581400	6.02262000
Н	2.39709600	-0.84508400	4.84747700
Н	3.95910000	0.07983700	3.69178500
Н	3.76271300	1.40228900	2.50526400
Н	4.86722200	0.04712400	2.16583200
С	-1.22450800	0.52984600	-0.70353500
С	-2.48617200	0.64838900	-0.09719700
С	-1.08770100	0.88932400	-2.05536800
С	-3.58265400	1.11529300	-0.82592200
Н	-2.63594900	0.35640700	0.93660200
С	-2.17767900	1.37016300	-2.77749800
Н	-0.11334000	0.77898800	-2.51922600

С	-3.43060700	1.48445600	-2.16457000
Н	-4.55424100	1.19016600	-0.34623400
Н	-2.05391100	1.65211300	-3.81913200
Н	-4.28230700	1.85481500	-2.72797200

S2 (*C1*)

HF= -129800230790

0.00000000	0.00000000	0.00000000
0.00000000	0.00000000	1.49346500
1.09994700	0.00000000	2.30105100
1.23417900	1.25911900	3.53266800
2.44386300	-1.09485700	1.92384100
0.99779200	0.30216500	-0.64856000
1.98984800	0.43356400	4.98648500
3.90259600	0.00880800	1.81055900
-0.89974100	0.44417900	1.92004900
1.23556500	-0.12345800	5.54588500
2.40183700	1.22484600	5.61663300
2.78968500	-0.23980300	4.67467300
4.09670900	0.53507800	2.74605400
3.75965100	0.71786300	0.99364300
4.74835300	-0.64520400	1.58472200
-1.30840600	-0.26088800	-0.68703400
-2.38883500	-0.86601100	-0.02644500
-1.43879200	0.08414400	-2.04216200
-3.58075100	-1.11901600	-0.70806300
-2.29408700	-1.15784600	1.01514600
-2.63123200	-0.15994400	-2.72016400
-0.59129800	0.54109100	-2.54244900
-3.70537000	-0.76177000	-2.05427100
-4.40896000	-1.59489500	-0.19103500
-2.72609400	0.11569900	-3.76649300
-4.63465700	-0.95350700	-2.58335100
	0.0000000 0.0000000 1.09994700 1.23417900 2.44386300 0.99779200 1.98984800 3.90259600 -0.89974100 1.23556500 2.40183700 2.78968500 4.09670900 3.75965100 4.74835300 -1.30840600 -2.38883500 -1.43879200 -3.58075100 -2.63123200 -0.59129800 -3.70537000 -4.40896000 -2.72609400 -4.63465700	0.00000000.00000000.00000000.00000001.099947000.00000001.234179001.259119002.44386300-1.094857000.997792000.302165001.989848000.433564003.902596000.00880800-0.899741000.444179001.23556500-0.123458002.401837001.224846002.78968500-0.239803004.096709000.535078003.759651000.717863004.74835300-0.64520400-1.30840600-0.26088800-2.38883500-0.86601100-1.438792000.08414400-3.58075100-1.11901600-2.29408700-1.15784600-0.591298000.54109100-3.70537000-0.76177000-4.40896000-1.59489500-2.726094000.11569900-4.63465700-0.95350700

S3 (C1)

HF= -1297.99103460			
С	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.48743100
С	1.12267200	0.00000000	2.28409500
S	1.56498200	1.47955100	3.11667700
S	2.24551500	-1.34453300	2.08413600
0	1.03183200	0.00269800	-0.66828400
С	2.35758700	0.95377800	4.69203000
С	3.90057800	-0.57977100	1.89136900

Н	-0.81844200	0.60528000	1.88161300
Н	1.66914300	1.11950200	5.52281000
Н	3.26358200	1.54500800	4.84069900
Н	2.61380600	-0.10596500	4.63517000
Н	4.26097100	-0.12166500	2.81336300
Н	3.87222700	0.15208100	1.08304000
Н	4.56668100	-1.40106300	1.61619800
С	-1.33903600	0.11716800	-0.67412800
С	-2.53245300	-0.25274800	-0.03565500
С	-1.38436100	0.56991800	-2.00213600
С	-3.75067900	-0.17130500	-0.71318400
Н	-2.50895000	-0.62595200	0.98386400
С	-2.60192600	0.66370000	-2.67407700
Н	-0.45252000	0.83872200	-2.48869400
С	-3.78828500	0.29279200	-2.03095500
Н	-4.66779400	-0.47091000	-0.21427900
Н	-2.62826500	1.02197100	-3.69920500
Н	-4.73690400	0.36214600	-2.55586000

S4 (*C1*)

HF= -1297.97597856

С	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.48234100
С	1.15414200	0.00000000	2.25781100
S	1.91576900	1.51911200	2.64016100
S	2.02305300	-1.52538100	2.26648200
0	1.02067900	-0.13751200	-0.67455200
С	2.82945100	1.26870100	4.22158200
С	3.79861100	-1.13559400	2.02958100
Н	-0.72944300	0.73493800	1.83646200
Н	2.47028700	1.99739600	4.95064200
Н	3.89981200	1.41007900	4.05772200
Н	2.64050600	0.25981300	4.59300800
Н	4.26984000	-0.76564900	2.94134900
Н	3.91010500	-0.41582400	1.21712500
Н	4.26658200	-2.08094200	1.74507500
С	-1.31589700	0.29115100	-0.67014400
С	-2.54524100	0.06120200	-0.03506100
С	-1.30440800	0.76512300	-1.99086300
С	-3.74418100	0.30186900	-0.70911400
Н	-2.56525900	-0.32734400	0.97883700
С	-2.50160200	1.01851700	-2.65921000
Н	-0.34653200	0.92291700	-2.47548800
С	-3.72457500	0.78732300	-2.01982200

Н	-4.69124800	0.10919500	-0.21331000
Н	-2.48339700	1.39205600	-3.67910800
Н	-4.65741700	0.98075600	-2.54199900

S5 (C1)

HF= -1297.95764958

С	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.47750800
С	1.17675100	0.00000000	2.24638400
S	2.21907900	1.38102100	2.19142800
S	1.76926100	-1.61919400	2.55431900
0	1.00565700	-0.22480500	-0.67757900
С	3.22802800	1.37049800	3.73652200
С	3.58931500	-1.61946300	2.32958400
Н	-0.63797900	0.84186200	1.77902000
Н	3.15791000	2.36061500	4.19078500
Н	4.27153200	1.14615600	3.50678700
Н	2.82879500	0.62618400	4.42766600
Н	4.11801000	-1.25661700	3.21229300
Н	3.84828400	-1.02465600	1.45126200
Н	3.86108700	-2.66326300	2.15588800
С	-1.29327400	0.38304200	-0.67002400
С	-2.53416700	0.24930600	-0.03085900
С	-1.24935900	0.84543400	-1.99369600
С	-3.71338800	0.57583100	-0.70343900
Н	-2.57757800	-0.13185900	0.98517300
С	-2.42647000	1.18288200	-2.66146300
Н	-0.28370700	0.92712600	-2.48166800
С	-3.66143700	1.04901700	-2.01795300
Н	-4.67091700	0.45783100	-0.20419700
Н	-2.38290500	1.54631300	-3.68431000
Н	-4.57868800	1.30748200	-2.53968100

S6 (C1)

HF= -1297.93768765

С	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.46802900
С	1.20723200	0.00000000	2.23205200
S	2.46088000	1.08632300	1.78205600
S	1.45072100	-1.51370200	3.04916100
0	0.97954800	-0.30515600	-0.69292300
С	3.60278800	1.30685000	3.21623400
С	3.24548100	-1.90161300	3.11866600
Н	-0.54636800	0.92221700	1.72721900

Н	3.89848600	2.35789400	3.21582400
Н	4.49041900	0.68019600	3.11912000
Н	3.07869400	1.08212200	4.14658200
Н	3.74777900	-1.41035700	3.95298900
Н	3.71609700	-1.63539200	2.16945700
Н	3.29922600	-2.98392100	3.25802200
С	-1.27952300	0.44156800	-0.66598200
С	-2.51903100	0.40242600	-0.01186000
С	-1.22246500	0.87100500	-1.99988300
С	-3.68158800	0.79741100	-0.67690400
Н	-2.57323200	0.03843800	1.00983100
С	-2.38300700	1.27327200	-2.66197500
Н	-0.25963700	0.87733800	-2.50002300
С	-3.61573100	1.23871100	-2.00216100
Н	-4.63854300	0.75331900	-0.16436800
Н	-2.32750500	1.61054900	-3.69333000
Н	-4.52029200	1.54681200	-2.51923800

S7 (*C1*)

HF= -1298.01197885

С	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.47583600
С	1.11858700	0.00000000	2.25787600
S	2.65795500	0.65406000	1.69464700
S	0.91211600	-0.52740500	3.95990400
0	0.91610900	0.51025800	-0.64839900
С	3.90459100	-0.21750900	2.71835200
С	1.33581500	0.98529300	4.90927300
Н	-0.93314200	-0.23331800	1.97591900
Н	4.86585700	0.07957000	2.29156900
Н	3.79186400	-1.29870500	2.62748200
Н	3.87742400	0.07039500	3.76977900
Н	2.36237400	1.30927400	4.73280500
Н	1.21953100	0.71615400	5.96200400
Н	0.64418800	1.79274100	4.66201700
С	-1.16168600	-0.63683700	-0.71423400
С	-2.08362700	-1.49371400	-0.08981700
С	-1.30578400	-0.36948900	-2.08667000
С	-3.12797700	-2.06445800	-0.82092000
Н	-1.98236000	-1.74127300	0.96138000
С	-2.35211200	-0.93275100	-2.81356500
Н	-0.58241400	0.28512400	-2.56107300
С	-3.26751000	-1.78229600	-2.18194000
Н	-3.82862100	-2.73189200	-0.32767700

Н	-2.45599000	-0.71140500	-3.87190100
Н	-4.08260700	-2.22362100	-2.74844800
S8 (C1)			
HF= -1298.01577836			
С	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.46943000
С	1.12529200	0.00000000	2.24013600
S	2.74621200	0.15517600	1.54750900
S	0.88842200	-0.16473600	4.01263800
0	1.01544100	0.30722500	-0.63320900
С	3.84319600	-0.49868400	2.86325000
С	1.42815500	1.48466000	4.61171600
Н	-0.95000100	-0.02913500	1.98924900
Н	4.82653900	-0.54665200	2.38786300
Н	3.54235600	-1.50142600	3.16864400
Н	3.90541100	0.15179200	3.73637400
Н	2.47352500	1.68632400	4.37200700
Н	1.30682100	1.46131800	5.69747800
Н	0.79293700	2.26682200	4.19187700
С	-1.26347100	-0.35962500	-0.72858000
С	-2.35631500	-0.98983600	-0.11018600
С	-1.33474000	-0.06837100	-2.10157900
С	-3.49613900	-1.31608500	-0.84824100
Н	-2.31898100	-1.25109400	0.94207000
С	-2.47521200	-0.38666400	-2.83558200
Н	-0.48085200	0.40869600	-2.57092000
С	-3.56026000	-1.01135800	-2.21017400
Н	-4.33078800	-1.81087000	-0.36020300
Н	-2.52047000	-0.14979600	-3.89466900
Н	-4.44907800	-1.26179400	-2.78234000
S9 (C1)			
HF= -1298.01436372			
C	0.00000000	0.0000000	0.0000000

C	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.46865500
С	1.13185100	0.00000000	2.23068000
S	2.72514400	-0.36483600	1.54511400
S	0.91258900	0.19284100	4.00438900
0	1.06020700	0.05855400	-0.63261600
С	3.72652700	-0.84732500	3.00266300
С	1.67926200	1.84108700	4.26219800
Н	-0.93306800	0.19891600	1.98237200
Н	4.66282900	-1.20705800	2.56709100

Н	3.25602900	-1.65434900	3.56502700
Н	3.94789500	-0.01116000	3.66721100
Н	2.72744200	1.85293700	3.95790100
Н	1.61433700	2.03739900	5.33514800
Н	1.12475000	2.60780500	3.71783600
С	-1.31275100	-0.03774300	-0.72737100
С	-2.51529800	-0.42878200	-0.11554500
С	-1.32249300	0.30527900	-2.08985800
С	-3.70179300	-0.47268200	-0.85051800
Н	-2.53126200	-0.72373400	0.92853200
С	-2.50860000	0.27211600	-2.81999400
Н	-0.38545500	0.59310600	-2.55486700
С	-3.70234700	-0.11724500	-2.20177800
Н	-4.62325100	-0.78635300	-0.36871700
Н	-2.50482400	0.54690300	-3.87085100
Н	-4.62688100	-0.14622000	-2.77138200

S10 (*C1*)

HF= -1298.01258845

С	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.46340800
С	1.14682400	0.00000000	2.21874500
S	2.59018600	-0.85147600	1.66031800
S	1.19484300	0.59123300	3.89061200
0	1.00881200	-0.27050400	-0.66159800
С	3.78857400	-0.66623600	3.03328200
С	-0.38317100	1.48064200	4.08977600
Н	-0.89722400	0.37785000	1.93523000
Н	4.68702600	-1.16950500	2.66767300
Н	3.45452800	-1.15964900	3.94841000
Н	4.02704700	0.38059200	3.23085900
Н	-0.50931000	2.23200900	3.30736500
Н	-0.30660700	1.97711700	5.05999700
Н	-1.23475700	0.79725400	4.10689300
С	-1.27526200	0.37383100	-0.71104200
С	-2.54671500	0.26183300	-0.12574400
С	-1.17743000	0.81701500	-2.04000800
С	-3.69375900	0.58985400	-0.85205600
Н	-2.65435600	-0.11077500	0.88807600
С	-2.32070700	1.16017400	-2.75978000
Н	-0.19196400	0.88009700	-2.48947700
С	-3.58339800	1.04733700	-2.16783100
Н	-4.67216400	0.48453200	-0.39198500
Н	-2.22966500	1.51073100	-3.78392000

Н	-4.47537400	1.30883900	-2.73004100
S11 (<i>C1</i>)			
HF= -1298.00493802			
С	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.48524400
С	1.11763700	0.00000000	2.27260900
S	2.34466700	-1.24926900	2.02856300
S	1.22486200	0.83465600	3.82976600
0	1.01622400	0.18372800	-0.66730500
С	3.94866400	-0.37596100	2.20922800
С	0.09277600	2.25599600	3.62435400
Н	-0.90514500	0.42116700	1.91780100
Н	4.71281100	-1.15505500	2.15661900
Н	4.02415200	0.13824000	3.16754100
Н	4.08687600	0.32400700	1.38342200
Н	0.24915600	2.72536400	2.65062800
Н	0.34881800	2.96331100	4.41657900
Н	-0.95199400	1.95978600	3.73643300
С	-1.33385500	-0.14576300	-0.68069400
С	-2.44644200	-0.71232800	-0.03921400
С	-1.45176800	0.26503200	-2.01814900
С	-3.65542400	-0.86406500	-0.72175800
Н	-2.36398200	-1.06002400	0.98625700
С	-2.66152500	0.12489600	-2.69572500
Н	-0.57967400	0.68687900	-2.50692200
С	-3.76661200	-0.44022800	-2.04877000
Н	-4.50677800	-1.31515900	-0.22028900
Н	-2.74495000	0.45175700	-3.72826300
Н	-4.70842800	-0.55314700	-2.57831100

Reference

- 2 G. K. Verma, R. K. Verma, G. Shukla, N. Anugula, A. Srivastava, M. S. Singh, *Tetrahedron*, **2013**, *69*, 6612-6619.
- 3 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q.

¹ Y. Gu, R. De Sousa, G. Frapper, C. Bachmann, J. Barrault, F. J érôme, *Green Chem.* **2009**, *11*, 1968-1972.

Morokuma, K. Cui, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, GAUSSIAN 98 (Revision A.3) Gaussian Inc. Pittsburgh, PA, USA, **1998**.

9. ¹H NMR and ¹³C NMR spectra

Electronic Supporting Information

H-H NOESY of 6a

1 (2.27, 4.01) **3** (4.01, 7.20)

² (2.11, 4.01) **4** (2.11, 7.20)

S70