The relationship between the surface oxygen species and the acidic properties of mesoporous metal oxides and their effects on propane oxidation

Shu Chen^a, Yanhua Li^a, Fei Ma^a, Fang Chen^a, Weimin Lu^{*a}

Characterizations

Raman

The Raman spectra were collected with an HR LabRaman 800 configuration, equipped with a liquid nitrogen-cooled CCD detector using the 514.5 nm line of an Ar⁺ laser. The laser power was 10 mW. Scan time was 30 s and the spectral range was 100-2000 cm⁻¹.

Fig. S1 Raman spectra of 10% V- Mn_2O_3 , 10% Cu- Mn_2O_3 , 10% Mo- Mn_2O_3 , meso- Mn_2O_3 samples.

Raman band located at 635 cm⁻¹ can be assigned to the Mn-O stretching vibration of the MnO_6 group.^{S1} On the Mo-Mn₂O₃ catalyst, the vibration at 850 cm⁻¹ is Mo-O-Mo vibration in highly dispersed surface molybdate ([MoO₄]²⁻).^{S2} As the vibrations at 300-340 cm⁻¹ for small crystallites of bulk structure and at 955 cm⁻¹ for surface molybdate were not detected, we consider that the Mo-O-Mo species on the Mo-Mn₂O₃ catalyst are dominated in highly

dispersed surface molybdate ($[MoO_4]^{2-}$). About the state of vanadia, researchers have reported that the vibrations at 1020~1035 cm⁻¹ belong to the V=O vibrations of monovanadate species and the bands in the 860 cm⁻¹ or 930 cm⁻¹ can be ascribed to the stretching modes in polyvanadate species. ^{S3, S4, S5} In the present study, the vibrations at 1020~1035 cm⁻¹ region did not be detected. We observed a very weak V-O-V bond centered at 854 cm⁻¹, if the band might be considered a peak. The V species could disperse well on V-Mn₂O₃ catalyst surface. Vibration peak of Cu aggregated state species were not detected on the Cu-Mn₂O₃.

HAADF-STEM and elemental mapping images

HAADF-STEM were performed using a Tecnai F20 G2 High-Resolution TEM (HRTEM) electron microscope. The composition of V-Mn₂O₃ and Mo-Mn₂O₃ were characterized using energy dispersive X-ray spectroscopy (EDX)–elemental mapping analysis. The FEI TIA software was used to control the STEM-EDX mapping.

Fig.S2A and Fig.S2B show HAADF-STEM and elemental mapping images of loaded V and Mo on meso- Mn_2O_3 surface. The V and Mo mapping prove the well distribution of the element signals on the surface of the particles.

Fig. S2A HAADF-STEM and elemental mapping images of V are presented. Scale bar: STEM 200 nm, elemental mapping 100 nm.

Fig. S2B HAADF-STEM and elemental mapping images of Mo are presented. Scale bar: HAADF-STEM 100 nm, elemental mapping 100 nm.

Table 1	IS. The	performance	of the c	atalysts.	Reaction	condition:	Temperature	480°C,
GHSV	= 4500	mL (g h) ⁻¹ , at	nd C ₃ H ₈	: $O_2 = 1$: 1 (mola	r ratio)		

	Conversion	Selectivity (%)									
catalyst	(%)	C1	C ₂₌	C ₃₌	CH ₂ O	ALD	ACR	AcT	AcA	СО	CO_2
Meso-Mn ₂ O ₃	24.3	2.2	20.6	18.6	0.0	0.0	0.0	0.0	0.0	0.0	58.2
bulk-Mn ₂ O ₃	21.1	4.8	30.6	22.8	0.0	0.0	0.0	0.0	0.0	0.0	41.1
10%Mo-Mn ₂ O ₃	22.2	1.3	12.0	37.2	1.5	1.2	2.2	0.0	0.0	11.6	33.0
10%Cu-Mn ₂ O ₃	19.7	0.9	12.2	29.5	0.2	0.6	0.0	0.0	0.0	0.0	56.6
1‰V-Mn ₂ O ₃	25.7	3.4	27.5	17.4	1.1	0.0	0.0	0.0	0.0	0.0	50.2
1%V-Mn ₂ O ₃	24.4	7.1	35.8	28.7	3.3	1.0	0.0	0.0	0.0	0.0	23.5
5%V-Mn ₂ O ₃	25.6	6.0	27.8	31.0	3.3	3.2	0.1	0.0	1.1	0.0	26.9
10%V- Mn ₂ O ₃	28.8	1.5	9.0	51.0	1.3	1.2	1.1	1.1	1.0	21.1	11.6
15%V-Mn ₂ O ₃	11.9	0.3	4.9	41.6	0.0	0.0	0.0	0.0	0.0	36.4	16.8

^{a.} C₁: methane, C₂=: ethylene, C₃=: propylene, CH₂O: formaldehyde, ALD: acetaldehyde, ACR: acrolein, AcT: acetone, AcA: acrylic acid, AA: acetic acid

Fig. S3 FT-IR spectra of reaction atmosphere (propane : $O_2 = 1 : 1$) adsorbed on (A) meso-Mn₂O₃, (B) 10% V-Mn₂O₃, (C) 10% Cu-Mn₂O₃, and (D) 10% Mo-Mn₂O₃ at 373, 423, 473, 523 and 573 K.

Fig. S4 X-ray O1s photoelectron emission spectra from the indicated materials.

Fig.S5 FT-IR spectra of -OH (in the absence of O_2) on (A) meso-Mn₂O₃, (B) 10% V-Mn₂O₃, (C) 10%Cu-Mn₂O₃ 10%Mo-Mn₂O₃, and (D) 10%Mo-Mn₂O₃,10%Cu-Mn₂O₃ from 323 to 573K.

References

^a Institute of Catalysis, Zhejiang University (Xixi Campus), Hangzhou 310028, PR China.

- S1 J.h. Jiang, A. Kucernak*, *Electrochimica Acta*, 2002, 47, 2381.
- S2 A. N. Desikan, L. Huang, S. T. Oyama, J. Phys. Chem., 1991, 95, 10050.
- 83 A. Khodakov, J. Yang, S. Su, E. Iglesia, A.T. Bell, J. Catal., 1998, 177, 343.
- S4 X. Gao, J.-M. Jehng, I.E. Wachs, J. Catal., 2002, 209, 43.
- **S5** P. Gruene, T. Wolfram, K. Pelzer, R. Schlögl, A. Trunschke, *Catal. Today*, 2010, **157**, 137.