Supporting information

Efficient hydrosilylation of imines using pre-catalysts based on iridium(III) metallacycles.

Yann Corre,^{a,e} Wissam Iali,^c Mustapha Hamdaoui,^c Xavier Trivelli,^d Jean-Pierre Djukic,^c Francine Agbossou-Niedercorn,^{a,b,e} Christophe Michon,^{a,b,e*}

^a Université Lille Nord de France, 59000 Lille, France
^b CNRS, UCCS UMR 8181, 59655 Villeneuve d'Ascq, France
^c Institut de Chimie de Strasbourg, UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
^d UGSF CNRS, UMR 8576, Université Lille Nord de France, 59655 Villeneuve d'Ascq Cedex France
^e ENSCL, UCCS-CCM-CCCF UMR 8181, (Chimie-C7) CS 90108, 59652 Villeneuve d'Ascq Cedex, France
Fax : +33-320436585, Email : christophe.michon@ensc-lille.fr

I) General remarks.	2
II) General procedures.	2
III) Characterization of compounds.	2
IV) Synthesis and characterization of complexes 8a-b and 9a-b.	8
V) Structural studies.	10
VI) Preliminary study of the reaction mechanism	14
VII) References.	17
<i>VIII)</i> ¹ <i>H</i> , ¹³ <i>C</i> NMR spectra of isolated compounds.	20
IX) HRMS spectra.	83

I) General Remarks.

All solvents were dried using standard methods and stored over molecular sieves (4 Å). All silver salts were weighted in a glovebox. All reactions were carried out under a dry nitrogen atmosphere and were repeated at least twice. Analytical thin layer chromatography (TLC) was performed on Merck pre-coated 0.20 mm silica gel Alugram Sil 60 G/UV₂₅₄ plates. Flash chromatography was carried out with Macherey silica gel (Kielselgel 60). ¹H (300, 600 and 900 MHz), ¹³C (75 and 126 MHz), ¹⁹F (282 MHz) and ¹¹B (128 MHz) spectra were acquired on Bruker Avance I and II spectrometers. Chemical shifts (δ) are reported downfield of Me₄Si in ppm and coupling constants are expressed in Hz. 1,3,5-trimethoxybenzene and 1,2,4,5-tetrachlorobenzene were used as internal standards when needed. HRMS-ESI analyses were performed at CUMA-Pharm. Dept.-University Lille Nord de-France. Ir(III) pre-catalysts¹ and BARF salts² were prepared following related procedures. Reagents **4a**, ³ **4b**, ⁴ **4c**, ⁵ **4d**, ⁶ **4e**, ³ **4f**, ³ **4g**, ³ **4h**, ⁷ **4i**, ³ **4j**, ⁸ **4k**, ⁶ **4l**, ³ **6a**, ³ **6b**, ⁹ **6c**, ⁹ **6f**, ¹⁰ **6g**, ¹⁰ **6h**, ⁹ **6i**, ⁹ **6j**, ⁹ **6k**, ⁹ **6l**, ¹⁰ **6m**¹¹ were prepared as reported.

II) General Procedure for the catalysis:

In a glovebox, imine reagent (0.15 mmol, 1 eq.), selected iridium(III) catalyst (x mol%) and additive (2x mol%) were introduced in a Schlenk tube. Under nitrogen, solvent (2 mL) was added followed by silane reagent (0.18 mmol, 1.2 eq.). The reaction mixture was then heated at 25°C under stirring. In order to follow the progress of the reaction, aliquots (0.1 mL) were taken at defined times, filtered through Celite with a CH_2Cl_2 wash (3 mL), evaporated under vacuum and analysed by ¹H NMR. At the end of the reaction, solvent was evaporated under vacuum and the crude product was directly purified by flash chromatography or by preparative TLC.

III) Characterization of compounds.

N-(1-phenylethyl)aniline 5a³

OMe

¹H NMR (300 MHz, CDCl₃): δ = 1.51 (d, ³*J* = 6.3 Hz, 3H, CH₃), 4.10 (1s, 1H, NH), 4.49 (q, ³*J*= 6.69 Hz, 1H, CH), 6.51 (d, ³*J*= 8.64 Hz, 2H, H_{Ar}), 6.64 (t, ³*J*= 7.2 Hz, 1H, H_{Ar}), 7.09 (m, 2H, H_{Ar}), 7.24 (m, 1H, H_{Ar}), 7.34 (m, 4H, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 25.1 (CH₃), 53.7 (CH), 113.5 (2CH), 117.4 (CH), 125.9 (2CH), 127.0 (CH), 128.8 (2CH), 129.2 (2CH), 145.3 (C), 147.4 (C, CN).

4-methoxy-N-(1-phenylethyl)aniline 5b⁴

4-fluoro-N-(1-phenylethyl)aniline 5c⁵

¹H NMR (300 MHz, CDCl₃): δ = 1.50 (d, ³*J*= 6.7 Hz, 3H, CH₃), 4.41 (q, ³*J*= 6.7 Hz, 1H, CH), 6.44 (m, 2H, H_{Ar}), 6.78 (m, 2H, H_{Ar}), 7.31 (m, 5H, H_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ = 25.2 (CH₃), 54.3 (CH), 114.3 (d, 2CH_{meta}, *J*_{C-F}= 7.3 Hz), 115.5 (d, 2CH_{ortho}, *J*_{C-F}= 22.2 Hz), 125.9 (2CH), 127.1 (CH), 128.8 (2CH), 143.6 (d, C_{para}, *J*_{C-F}= 1.1 Hz), 145.1 (C, CN), 156.0 (d, C_{ipso}, *J*_{C-F}= 233.4 Hz).

2-bromo-N-(1-phenylethyl)aniline 5d⁶

¹H NMR (300 MHz, CDCl₃): $\delta = 1.57$ (d, ³J = 6.8 Hz, 3H, CH₃), 4.51 (q, ³J = 6.7 Hz, 1H, CH), 4.74 (bs, 1H, NH), 6.38 (dd, ³J = 1.5, 8.1 Hz, 1H, H_{Ar}), 6.50 (m, 1H, H_{Ar}), 6.98 (m, 1H, H_{Ar}), 7.22 (m, 1H, H_{Ar}), 7.32 (m, 4H, H_{Ar}), 7.40 (dd, ³J = 1.5, 7.9 Hz, 1H, H_{Ar}). ¹³C NMR (75 MHz, CDCl₃): $\delta = 25.3$ (CH₃), 53.7 (CH), 109.4 (C), 112.8 (CH), 117.9 (CH), 125.8 (2CH), 127.2 (CH), 128.4 (CH), 128.8 (2CH), 132.3 (CH), 143.9 (C), 144.6 (C).

2-ethyl-N-(1-phenylethyl)aniline 5e

¹H NMR (300 MHz, CDCl₃): δ = 1.37 (s, 3H, CH_{3 Et}), 1.61 (d, *J* = 6.59 Hz, 3H, CH₃), 2.63 (q, ³*J* = 7.54 Hz, 2H, CH₂), 4.0 (bs, 1H, NH), 4.58 (q, ³*J* = 6.59 Hz, 1H), 6.44 (dd, ³*J* = 1.00 Hz, 1H, H_{Ar}), 6.70 (td, ³*J* = 7.39 Hz, 1H, H_{Ar}), 7.0 (m, 1H, H_{Ar}), 7.12 (m, 1H, H_{Ar}), 7.27 (m, 1H, H_{Ar}), 7.38 (m, 4H, H_{Ar}).¹³C NMR (75 MHz, CDCl₃): δ = 13.0 (CH₃), 24.1 (CH₂), 25.4 (CH₃), 53.4 (CH), 111.5 (CH), 117.1 (CH), 125.9 (2CH), 126.9 (2CH), 127.3 (C), 127.8 (CH), 128.7 (2CH), 144.5 (C), 145.4 (C). HRMS (EI): calculated for C₁₆H₂₀N (M+), 226.3407; found, 226.15903.

N-(1-phenylpropyl)aniline 5f³

HN^{_Ph} ↓

¹H NMR (300 MHz, CDCl₃): δ = 0.96 (t, ³*J*= 7.4 Hz, 3H, CH₃), 1.83 (m, 2H, CH₂), 4.06 (bs, 1H, NH), 4.23 (t, ³*J*= 6.7 Hz, 1H, CH), 6.52 (d, ³*J*= 7.7 Hz, 2H, H_{Ar}), 6.63 (t, ³*J*= 7.3 Hz, 1H, H_{Ar}), 7.08 (t, ³*J*= 7.9 Hz, 2H, H_{Ar}), 7.21 (m, 1H, H_{Ar}), 7.31 (m, 4H, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 10.9 (CH₃), 31.8 (CH₂), 59.9 (CH), 113.4 (2CH), 117.3 (CH), 126.6 (2CH), 127.1 (CH), 128.6 (2CH), 129.2 (2CH), 144.0 (C), 147.6 (C, CN).

N-benzhydrylaniline 5g³

^{HN}/_{Ph}/_{Ph} ¹H NMR (300 MHz, CDCl₃): δ = 5.50 (s, 1H, CH), 6.57 (d, ³*J*= 7.7 Hz, 2H, H_{Ar}), 6.71 (t, ³*J*=7.3 Hz, 1H, H_{Ar}), 7.12 (t, ³*J*= 7.5 Hz, 2H, H_{Ar}), 7.29 (m, 10H, H_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ = 63.2 (CH), 113.7 (2CH), 117.9 (CH), 127.5 (2CH), 127.7 (4CH), 128.9 (4CH), 129.3 (2CH), 143.1 (2C), 147.6 (C, CN).

N-cyclohexylaniline 5h¹²

¹H NMR (300 MHz, CDCl₃): δ = 1.25 (m, 6H), 1.75 (m, 2H), 2.06 (m, 2H), 3.25 (non, ³*J*= 3.7 Hz, 1H), 6.59 (d, ³*J*= 7.6 Hz, 2H_{Ar}), 6.67 (t, ³*J*= 7.3 Hz, 1H_{Ar}), 7.16 (t, ³*J*= 7.9 Hz, 2H_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ = 25.2 (2CH₂), 26.1 (CH₂), 33.5 (2CH₂), 51.9 (CH), 113.4 (2CH), 117.1 (CH), 129.5 (2CH), 147.4 (C).

N-benzyl-1-phenylethanamine 5i³

HN Bn

Ph

¹H NMR (300 MHz, CDCl₃): δ = 1.27 (d, ³*J*= 6.3 Hz, 3H, CH₃), 1.78 (bs, 1H, NH), 3.51 (dd, ³*J*= 13.2 Hz, 2H, CH₂), 3.71 (q, ³*J*= 6.6 Hz, 1H, CH), 7.17 (m, 10H, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 24.5 (CH₃), 51.7 (CH₂), 57.6 (CH), 126.9 (2CH), 127.0 (1CH), 127.1 (1CH), 128.3 (2CH), 128.5 (2CH), 128.6 (2CH), 140.5 (C), 145.5 (C).

N-(4-methylpentan-2-yl)aniline 5j⁸

¹H NMR (300 MHz, CDCl₃): $\delta = 0.94$ (d+d, ³*J*= 6.9 Hz, 6H), 1.16 (d, ³*J*= 6.5 Hz, 3H), 1.27 (pent, d, ³*J*= 7.1 Hz, 1H), 1.48 (hex, ³*J*= 7.1 Hz, 1H), 1.76 (hept, ³*J*= 6.8 Hz, 1H), 3.54 (hex, ³*J*= 6.5 Hz, 1H, CH), 6.59 (d, ³*J*= 7.7 Hz, 2H, H_{Ar}), 6.66 (t, ³*J*= 7.3 Hz, 1H, H_{Ar}), 7.16 (t, ³*J*= 7.8 Hz, 2H, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 21.2 (CH₃), 22.7 (CH₃), 23.1 (CH₃), 25.3 (CH), 46.7 (CH₂), 47.1 (CH), 113.3 (2CH), 116.9 (CH), 129.4 (2CH), 147.8 (C).

N-(1-phenylethyl)cyclohexanamine 5k¹³

¹H NMR (300 MHz, CDCl₃): δ = 1.21 (m, 5H), 1.29 (d, ³*J*= 6.6 Hz, 3H, CH₃), 1.49 (m, 1H), 1.64 (m, 3H), 1.93 (m, 1H), 2.24 (m, 1H), 3.92 (q, ³*J*= 6.6 Hz, 1H, CH), 7.28 (m, 5H, H_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ = 25.0 (CH₃), 25.1 (CH₂), 25.4 (CH₂), 26.3 (CH₂), 33.3 (CH₂), 34.6 (CH₂), 53.8 (CH), 54.6 (CH), 126.6 (2CH), 126.8 (CH), 128.5 (2CH), 146.3 (C).

N-Benzylbutan-1-amine 5l⁴

Ph

¹H NMR (300 MHz, CDCl₃): δ = 0.87 (t, ³*J* = 1.0 Hz, 3H, CH_{3 *n*-Bu}), 1.29 (m, 2H, CH₂), 1.37 (d, ³*J* = 6.6 Hz, 3H, CH₃), 1.46 (m, 2H, CH₂), 2.45 (m, 2H, CH₂), 3.76 (q, ³*J* = 6.6 Hz, 1H, CH), 7.23 (m, 2H, H_{Ar}), 7.33 (m, 3H, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (CH₃), 20.6 (CH₂), 24.4 (CH₃), 32.4(CH₂), 47.5(CH₂), 58.6 (CH), 126.7 (2CH), 127.0 (CH), 128.5 (2CH), 145.4(C).

N-benzylaniline 7a³

HN^{Ph}

¹H NMR (300 MHz, CDCl₃): δ = 4.03 (bs, 1H, NH), 4.35 (s, 2H, CH₂), 6.65 (d, ³*J*= 8.2 Hz, 2H, H_{Ar}), 6.75 (t, ³*J*= 7.3 Hz, 1H, H_{Ar}), 7.17 (t, ³*J*= 7.4 Hz, 2H, H_{Ar}), 7.35 (m, 5H, H_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ = 48.4 (CH₂), 112.9 (2CH), 117.7 (1CH), 127.3 (1CH), 127.6 (2CH), 128.7 (2CH), 129.3 (2CH), 139.5 (C), 148.3 (C, CN).

N-benzyl-2-bromoaniline 7b¹⁴

¹H NMR (300 MHz, CDCl₃): δ = 4.42 (s, 2H, CH₂), 4.86 (bs, 1H, NH), 6.61 (m, 2H, H_{Ar}), 7.14 (m, 1H, H_{Ar}), 7.34 (m, 5H, H_{Ar}), 7.46 (dd, ³*J*=1.41, 7.82 Hz, 1H, H_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ = 48.2 (CH₂), 109.9 (C), 111.9 (CH), 118.2 (CH), 127.4 (2CH), 127.5 (CH), 128.6 (CH), 128.9 (2CH), 132.5 (CH), 138.7 (C), 144.8 (C).

2-ethyl-N-(1-phenylethyl)aniline 7c

¹H NMR (300 MHz, CDCl₃): δ = 1.37 (s, 3H, CH_{3 Et}), 1.61 (d, *J* = 6.59 Hz, 3H, CH₃), 2.63 (q, ³*J* = 7.54 Hz, 2H, CH₂), 4.0 (bs, 1H, NH), 4.58 (q, ³*J* = 6.59 Hz, 1H), 6.44 (dd, ³*J* = 1.00 Hz, 1H, H_{Ar}), 6.70 (td, ³*J*= 7.39 Hz, 1H, H_{Ar}), 7.0 (m, 1H, H_{Ar}), 7.12 (m, 1H, H_{Ar}), 7.27 (m, 1H, H_{Ar}), 7.38 (m, 4H, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 13.0 (CH₃), 24.1 (CH₂), 25.4 (CH₃), 53.4 (CH), 111.5 (CH), 117.1 (CH), 125.9 (2CH), 126.9 (2CH), 127.3 (C), 127.8 (CH), 128.7 (2CH), 144.5 (C), 145.4 (C).

HRMS (EI): calculated for C₁₆H₂₀N (M+), 226.3407; found, 226.15903.

N-(4-Fluorophenyl)benzenemethanamine 7d¹⁵

¹H NMR (300 MHz, CDCl₃): δ = 3.83 (br s, 1H, NH), 4.31 (s, 2H, CH₂), 6.66 (m, 2H, H_{Ar}), 6.89 (m, 2H, H_{Ar}), 7.33 (m, 5H, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 49.1 (CH₂), 113.8 (d, 2CH_{meta}, J_{C-F} = 7.5 Hz), 115.8 (d, 2CH_{ortho}, J_{C-F} = 22.5 Hz), 127.5 (CH), 127.6 (2CH), 128.8 (2CH), 139.3(C, CN), 144.5 (d, C_{para}, J_{C-F} = 2.3 Hz), 156.0 (d, C_{ipso}, J_{C-F} = 234.0 Hz).

N-(4-Methoxyphenyl)benzenemethanamine 7e¹⁵

OMe

HN Ph

¹H NMR (300 MHz, CDCl₃): δ = 3,47 (bs, 1H, NH), 3.76 (s, 3H, OCH₃), 4.30 (s, 2H, CH₂), 6.63 (m, 2H, H_{Ar}), 6.80 (m, 2H, H_{Ar}), 7.34 (m, 5H, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 49.4 (CH₂), 55.9 (OCH₃), 114.3 (2CH), 115.1 (2CH), 127.3 (CH), 127.7 (2CH), 128.7 (2CH), 139.8 (C), 142.6 (C), 152.4 (C).

N-(2-bromobenzyl)aniline 7f¹⁶

¹H NMR (300 MHz, CDCl₃): δ = 4.24 (bs, 1H, NH), 4.43 (s, 2H, CH₂), 6.64 (m, 2H, H_{Ar}), 6.75 (tt, ³*J*= 7.3 Hz, 1H, H_{Ar}), 7.17 (m, 3H, H_{Ar}), 7.27 (q, ³*J*= 1.0 Hz, 1H, H_{Ar}), 7.43 (m, 1H, H_{Ar}), 7.58 (dd, ³*J*= 7.9 Hz, 1H, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 48.6 (CH₂), 113.2 (2CH), 118.1 (CH), 123.4 (C), 127.7 (CH), 128.8 (CH), 129.4 (CH), 129.5 (2CH), 132.9 (CH), 138.2 (C), 147.7 (C).

N-(2-methoxybenzyl)aniline 7g¹⁶

¹H NMR (300 MHz, CDCl₃): δ = 3.88 (s, 3H, OCH₃), 4.36 (s, 2H, CH₂), 6.71 (m, 3H, H_{Ar}), 6.93 (m, 2H, H_{Ar}), 7.19 (m, 1H, H_{Ar}), 7.27 (m, 1H, H_{Ar}), 7.33 (dd, ³*J*=7.3 Hz, 1H, H_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ = 43.7 (CH₂), 55.4 (OCH₃), 110.4 (CH), 113.4 (2CH), 117.6 (CH), 120.7 (CH), 127.4 (C), 128.5 (CH), 129.1 (CH), 129.3 (2CH), 148.4 (C), 157.6 (C).

Dibenzylamine 7h¹⁷

^{Ph} ^{HN} ¹H NMR (300 MHz, CDCl₃): δ = 3.83 (s, 4H, CH₂), 7.31 (m, 10H, H_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ = 53.3 (2CH₂), 127.1(2CH), 128.3 (2CH), 128.5 (2CH), 140.5 (2C).

N-Benzyl-butyl-amine 7i¹⁸

¹H NMR (300 MHz, CDCl₃): δ = 0.94 (t, ³*J* = 7.3 Hz, 3H, CH₃), 1.36 (m, 2H, CH₂), 1.53 (m, 2H, CH₂), 2.66 (t, ³*J* = 7.2 Hz, 2H, CH₂), 3.82 (s, 2H, N-CH₂), 7.31 (m, 5H, H_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (CH₃), 20.6 (CH₂), 32.2 (CH₂), 49.3 (CH₂), 54.1 (CH₂), 127.0 (CH), 128.3 (2CH), 128.5 (2CH), 140.5 (C).

N-(naphthalen-1-ylmethyl)aniline 7j¹⁴

¹H NMR (300 MHz, CDCl₃): δ = 4.03 (bs, 1H, NH), 4.75 (s, 2H, CH₂), 6.70 (m, 2H, H_{Ar}), 6.77 (m, 1H, H_{Ar}), 7.21 (m, 2H, H_{Ar}), 7.21 (m, 2H, H_{Ar}), 7.44 (m, 1H, H_{Ar}), 7.54 (m, 3H, H_{Ar}), 7.82 (d, ³*J*= 8.10 Hz, 1H, H_{Ar}), 7.91 (m, 1H, H_{Ar}), 8.09 (m, 1H, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 46.7 (CH₂), 112.9 (2CH), 117.8 (CH), 123.7(CH), 125.7(CH), 126.0 (CH), 126.2 (CH), 126.5 (CH), 128.3 (CH), 128.9 (CH), 129.5 (2CH), 131.7 (C), 134.1 (C), 134.5 (C), 148.4 (C).

N-(furan-2-ylmethyl)aniline 7k¹⁴

OMe

¹H NMR (300 MHz, CDCl₃): δ = 3.83 (bs, 1H), 4.34 (d, ³*J* = 0.8 Hz, 2H, CH₂), 6.26 (qd, ³*J* = 3.2 Hz, 1H, H_{fur}), 6.34 (dd, ³*J* = 3.3 Hz, 1 H, H_{fur}), 6.70 (m, 2H, H_{Ar}), 6.78 (m, 1H, H_{Ar}), 7.21 (m, 2H, H_{Ar}), 7.39 (dd, ³*J* = 1.9 Hz, 1H, H_{fur}).

¹³C NMR (75 MHz, CDCl₃): δ = 41.5 (CH₂), 107.1 (CH), 110.5 (CH), 113.3 (2CH), 118.2 (CH), 129.4 (2CH), 142.1 (CH), 147.6 (C), 152.8 (C).

N-(cyclohexylmethyl)-4-methoxyaniline 7l¹⁹

¹H NMR (300 MHz, CDCl₃): δ = 0.98 (m, 2H, H_{Cy}), 1.24 (m, 3H, H_{cy}), 1.55 (m, 1H, H_{cy}), 1.77 (m, 5H, CH_{cy}), 2.91 (d, ³*J*= 6.6 Hz, 2H, N-CH₂), 3.75 (s, 3H, OCH₃), 6.57 (m, 2H, H_{Ar}), 6.77 (m, 2H, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 26.0 (2CH₂), 26.8 (CH₂), 31.4 (2CH₂), 37.8 (CH), 51.8 (CH₂), 56.0 (OCH₃), 114.1 (2CH), 115.1 (2CH), 142.9 (C), 151.8 (C).

N-cinnamylaniline 7m₁²⁰

Ph N-Ph

¹H NMR (300 MHz, CDCl₃): δ = 3.83 (bs, 1H), 3.94 (dd, ³*J*= 4.1 Hz, 2H), 6.30 (t+t, ³*J*= 5.8 Hz, 1H), 6.69 (m, 4H), 7.22 (m, 3H), 7.35 (m, 4H).

¹³C NMR (75 MHz, CDCl₃): δ = 46.4 (CH₂), 113.2 (2CH), 117.8 (CH), 126.5 (2CH), 127.2 (CH), 127.7 (CH), 128.7 (2CH), 129.4 (2CH), 131.7 (CH), 137.0 (C), 148.2 (C).

N-(3-phenylpropyl)aniline 7m₂²¹

Ph N^{Ph}

¹H NMR (300 MHz, CDCl₃): δ = 1.96 (pent, ³*J*= 7.7 Hz, 2H), 2.74 (t, ³*J*= 6.8 Hz, 2H), 3.15 (d, ³*J*= 7.1 Hz, 2H), 3.62 (bs, 1H), 6.59 (d, ³*J*= 8.6 Hz, 2H), 6.69 (t, ³*J*= 7.3 Hz, 1H), 7.19 (m, 5H), 7.29 (m, 2H).

¹³C NMR (75 MHz, CDCl₃): δ = 31.2 (CH₂), 33.6 (CH₂), 43.6 (CH₂), 112.9 (2CH), 117.4 (CH), 126.1 (CH), 128.5 (2CH), 128.6 (2CH), 129.4 (2CH), 141.9 (C), 148.5 (C).

IV) Synthesis and characterization of complexes 8a-b and 9a-b.

Synthesis of complex 8a:

In a glovebox, iridium(III) complex **1** (40 mg, 7.7.10⁻⁵ mmol, 1 eq.) and NaBArF₂₄ (1 eq) were introduced in a Schlenk tube. Under nitrogen, degassed CH_2Cl_2 (1 mL) was added. The reaction mixture was stirred during 30 minutes at room temperature and then filtered through dry Celite which was further washed with CH_2Cl_2 . Solvent was removed under reduced pressure to afford complex **8a** as a red powder (quantitative).

Elemental analysis: calculated for $C_{53}H_{35}BF_{24}IrN + 0.5 CH_2Cl_2 C$, 46.31; H, 2.59; N, 1.01; measured C, 46.47; H, 2.99; N, 0.90. HMRS-ESI (m/z): [M]⁺ calcd for $C_{21}H_{23}IrN$: 482.14489, found: 482.14543 (100%); [M]⁻ m/z calcd for $C_{32}H_{12}BF_{24}$: 863.06543 [M], measured: 863.06150 (100%).

Synthesis of complex 8b:

A mixture of iridium(III) complex 1 (50 mg, 0.097 mmol) and NaBArF₂₄ (43 mg, 0.048 mmol) was stirred at room temperature for two hours in freshly distilled acetone (1 mL) and CH₂Cl₂ (1 mL) resulting in a marked change in color from deep orange to lemon yellow. Upon concentration of the solvent, the residue was washed with cold pentane to afford a red powder after removal of the solvents under reduced pressure. The remaining solid was recrystallized using CH₂Cl₂/pentane (46.6 mg, 52%).

¹H NMR (600 MHz, 253 K, CDCl₃) δ 8.44 (m, 2H, *H*-C=N), 7.77 (m, 2H, H_{Ar}), 7.74-7.71 (m, 9H, H_{Ar}+H_{BArF24}), 7.69-7.63 (m, 5H, H_{BArF24}), 7.55 (d, 1H, H_{Ar}), 7.52 (m, 4H, H_{Ar}), 7.30 (t, 1H, H_{Ar}), 7.24 (t, 1H, H_{Ar}), 7.17-7.08 (m, 3H, H_{Ar}), 1.08-1.04 (m, 30H, Cp-*Me*₅).

¹³C (126 MHz, 293 K, CDCl₃) δ 167.0, 162.0 (q, 4C, ¹*J*_{B-C} = 50.0, BArF), 151.8, 144.9, 138.9, 138.4, 134.9 (bs, 8CH_{ortho} BArF), 131.2, 129.0 (q, 8C-CF₃, ²*J*_{C-F} = 31.8 Hz), 125.0 (q, 8CF₃, ¹*J*_{C-F} = 272.2 Hz), 123.8, 123.6, 123.0, 121.4, 118.8, 117.6 (bs, 4CH_{para} BArF), 89.6 (*Cp*-Me₅), 8.4 (Cp-*Me*₅).

¹⁹F (282 MHz, 298 K, CDCl₃) δ -65.28. ¹¹B (128 MHz, 298 K, CDCl₃) δ -6.62.

HRMS-ESI (*m/z*): $[M]^+$ calcd for C₄₂H₄₆ClIr₂N₂, 999.2593; found, 999.2580; $[M]^-$ calcd for C₃₂H₁₂BF₂₄, 863.0649; found, 863.0670.

Elemental analysis: calculated for $C_{74}H_{58}BClF_{24}Ir_2N_2 + 2 CH_2Cl_2 C$, 44.93; H, 3.08; N, 1.38; measured C, 45.00; H, 2.90; N, 1.20.

Synthesis of complexes 9a-d:

In a glovebox, iridium(III) complex **1** (40 mg, 7.7.10⁻⁵ mmol, 1 eq.) was added to NaBArF₂₄ (1 eq) (or AgBF₄ or AgPF₆ or AgSbF₆) in a Schlenk tube. Under nitrogen, degassed CH₂Cl₂ (1 mL) was added. The reaction mixture was stirred during 30 minutes at room temperature. Then, CH₃CN (7 μ L, 1,5 eq.) was added. After 30 minutes, the reaction mixture was filtered through dry Celite which was further washed with CH₂Cl₂. After all, solvent was removed under reduced pressure. The complex obtained was recristallized twice with acetone/*n*-Hexane for **9a**, CH₂Cl₂/*n*-Hexane for **9c** or **9d** and CH₂Cl₂/cyclohexane for **9b**, to give a solid: pale yellow powder (**9a**, 85% yield), yellow powder (**9b**, 83% yield), yellow powder (**9c**, 77% yield), orange powder (**9d**, 70% yield).

Complex 9a

¹H NMR (300 MHz, CD₂Cl₂) : δ = 1.66 (s, 15H, CH₃-Cp*), 2.23 (s, 2H, CH₃-CN), 7.20 (m, 2H, H_{Ar}), 7.25 - 7.33 (m, 1H, H_{Ar}), 7.57 (s, 4H, H_{Ar} BArF *para*), 7.74 (m, 10H, 2H_{Ar} + 8H_{Ar} BArF *meta*), 7.83 (m, 1H, H_{Ar}), 7.92 (m, 1H, H_{Ar}), 8.61 (d, 1H, *J* = 6 Hz, H_{Ar}). ¹³C NMR (75 MHz, CD₂Cl₂): 4.3 (*CH*₃-CN), 9.1 (5CH₃-Cp*), 92.0 (5C-Cp*), 118.1 (bs, 4CH_{para} BArF), 118.6 (C, Me-*CN*), 120.5 (CH), 124.2 (CH), 124.7 (CH), 125.1 (CH), 125.2 (q, 8CF₃, ¹*J*_{C-F} = 255.0 Hz), 129.4 (q, 8C-CF₃, ²*J*_{C-F} = 31.5Hz), 130.6 (C), 132.4 (CH), 135.4 (bs, 8CH_{ortho} BArF), 136.3 (CH), 139.9 (CH), 145.3 (C), 152.1 (CH), 156.8 (C), 162.4 (q, 4C, ¹*J*_{B-C} = 49.5, BArF), 168.3(C).

¹⁹F NMR (282 MHz, CD₂Cl₂): -62.9.

Elemental analysis: calculated for $C_{55}H_{38}BF_{24}IrN_2$, C, 47.67; H, 2.76; N, 2.02; measured C, 47.20; H, 3.09; N, 1.52.

HRMS-ESI (*m/z*): $[M]^+$ calcd for C₂₃H₂₆IrN₂, 523.17197; found, 523.17141 (100); $[M]^+$ calcd for C₂₁H₂₃IrN, 482.14543; found, 482.14523 (32); $[M]^-$ calcd for C₃₂H₁₂BF₂₄, 863.06433; found, 863.06599.

Complex 9b

¹H NMR (300 MHz, CDCl₃): δ = 1.70 (s, 15H, CH₃-Cp*), 2.29 (s, 3H, CH₃-CN), 7.16 (m, 1H, J = 6.0 Hz, H_{Ar}), 7.25 (t, 1H, H_{Ar}), 7.34 (t, 1H, J = 6.0 Hz, H_{Ar}), 7.72 (d+d, 2H, J = 6.0 Hz), 7.88 (m, 2H, H_{Ar}), 8.80 (d, 1H, J = 6.0 Hz, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 3.7 (*CH*₃-CN), 8.8 (5CH₃-Cp^{*}), 91.4 (5C-Cp^{*}), 118.6 (C, Me-*CN*), 119.5 (CH), 124.0 (CH), 124.3 (CH), 124.5 (CH), 131.6 (CH), 135.9 (CH), 139.3 (CH), 145.0 (C), 152.8 (CH), 156.7 (C), 167.0 (C).

¹⁹F NMR (282 MHz, CD₃CN): -63.3.

Elemental analysis: calculated for $C_{23}H_{26}SbF_6IrN_2$, C, 36.42; H, 3.46; N, 3.69; measured C, 37.17; H, 3.44; N, 4.02.

HRMS-ESI (*m/z*): $[M]^+$ calcd for C₂₃H₂₆IrN₂, 523.17197; found, 523.17060 (100); $[M]^+$ calcd for C₂₁H₂₃IrN, 482.14543; found, 482.14431 (41); $[M]^-$ calcd for SbF₆, 234.89479; found, 234.89442 (100).

Complex 9c

¹H NMR (300 MHz, CDCl₃): δ = 1.62 (s, 15H, CH₃-Cp*), 2.24 (s, 3H, CH₃-CN), 7.15 (t, 1H, J = 6 Hz, H_{Ar}), 7.25 (t, 1H, J = 6 Hz, H_{Ar}), 7.29 (m, 1H, H_{Ar}), 7.65 (d+d, 2H, J = 6 Hz, H_{Ar}), 7.79 (m, 2H, H_{Ar}), 8.76 (d, 1H, J = 6 Hz, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 3.7 (*CH*₃-CN), 8.8 (5CH₃-Cp*), 91.4 (5C-Cp*), 118.8 (C, Me-*CN*), 119.4 (CH), 124.0 (CH), 124.3 (CH), 124.4 (CH), 131.5 (CH), 135.9 (CH), 139.3 (CH), 145.0 (C), 153.0 (CH), 156.7 (C), 167.0 (C).

¹⁹F NMR (282 MHz, CDCl₃): -73.1 (d, *J*= 711.3).

³¹P NMR (121 MHz, CDCl₃): -144.3 (hept).

Elemental analysis: calculated for $C_{23}H_{26}PF_6IrN_2 + \frac{1}{4}$ cyclohexane, C, 42.73; H, 4.21; N, 4.07; measured C, 43.05; H, 4.07; N, 2.92.

HRMS-ESI (*m/z*): $[M]^+$ calcd for C₂₃H₂₆IrN₂, 523.17197; found, 523.17048 (100); $[M]^+$ calcd for C₂₁H₂₃IrN, 482.14543; found, 482.14426 (46); $[M]^-$ calcd for PF₆, 144.96363; found, 144.96364 (100).

Complex 9d

¹H NMR (300 MHz, CDCl₃): δ = 1.71 (s, 15H, CH₃-Cp*), 2.36 (s, 3H, CH₃-CN), 7.16 (m, 1H, H_{Ar}), 7.26 (m, 1H, H_{Ar}), 7.38 (m, 1H, H_{Ar}), 7.72 (m, 2H), 7.87 (m, 2H, H_{Ar}), 8.9 (d, 1H, *J* = 6 Hz, H_{Ar}).

¹³C NMR (75 MHz, CDCl₃): δ = 3.9 (*CH*₃-CN), 8.8 (5CH₃-Cp^{*}), 91.4 (5C-Cp^{*}), 119.1 (C, Me-*CN*), 119.3 (CH), 123.9 (CH), 124.3 (CH), 124.4 (CH), 131.4 (CH), 135.8 (CH), 139.2 (CH), 145.1 (C), 153.2 (CH), 156.8 (C), 166.9 (C).

¹⁹F NMR (282 MHz, CDCl₃): -152.8.

Elemental analysis: calculated for $C_{23}H_{26}BF_4IrN_2$, C, 45.32; H, 4.30; N, 4.60; measured C, 44.76; H, 4.41; N, 2.80.

HRMS-ESI (*m/z*): $[M]^+$ calcd for C₂₃H₂₆IrN₂, 523.17197; found, 523.17090 (100); $[M]^+$ calcd for C₂₁H₂₃IrN, 482.14543; found, 482.14453 (71); $[M]^-$ calcd for BF₄, 87.00237; found, 87.00202 (100).

V) Structural studies.

The X-ray structure determination of **8b** confirmed the dimeric patern of the complex, two Cp* iridacycle fragments built on 2-phenyl-pyridine ligands were shown to be bonded to a chloride atom. The compound bears a single positive charge and a single BArF₂₄ anion. See file CCDC 1031536. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre : <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure S1. Molecular structure of two chlorobridged iridium complex **8b**. Disorders on some CF_3 groups were deleted for clarity reason. Another complex and its anion as well as one molecule of dichloromethane and all hydrogen atoms were deleted for clarity reason. Selected bond lengths (Å): Ir3-Cl2 2.479 (3), Ir4-Cl2 2.441 (4), Ir3-N3 2.073 (11), Ir4-N4 2.085 (12) and from the two 2-phenyl-pyridine ligands: Ir3-C53 2.043 (13), Ir4-C74 2.019 (16). CCDC 1031536.

Compound 8b (CCDC 1031536)	
formula	$C_{75}H_{60}BCl_3F_{24}Ir_2N_2$
mol. wt	1946.81
cryst. Syst.	triclinic
Space group	<i>P</i> -1
<i>a</i> (Å)	19.0059 (5)
<i>b</i> (Å)	21.9914 (5)
<i>c</i> (Å)	22.0920 (7)
α (deg)	114.0030 (10)
β (deg)	107.6660 (10)
$\gamma(\text{deg})$	99.412 (2)
$V(\text{\AA}^3)$	7588.0 (4)
Ζ	4
color	red
crystal dim. (mm)	0.25×0.20×0.10
$D_{\text{calc}} (\text{gcm}^{-3})$	1.4353
F ₀₀₀	3800
μ (mm ⁻¹)	3.712
trans. Min. and max	0.43577/0.64126
<i>T</i> (K)	173 (2)
hkl limits	-24,+22/-28,+28/-28,+28
2θ limits (deg)	1.074/27.504
num. of data meas.	34734
num. of data with $I > 2 \sigma(I)$	17047
num. of var.	1734
R	0.0985
R_w	0.2244
GOF	1.01

Regarding complex **9a**, the coordination of acetonitrile to the iridium was confimed at the liquid state by several analysis. DOSY ¹H NMR experiment showed similar diffusion coefficient D (D of 8.8-9.1) for the 2-phenyl-pyridine ligand, the pentamethylcyclopentadienyl (Cp*) fragment and the acetonitrile (Figure S2, D in 10^{-10} m²/s not calibrated). As expected, BARF anion was bigger (D of 7.7-7.9) and solvents were much more mobile and free: CDHCl₂ (D of 30.0) and acetone solvate (D of 28.4).

Figure S2. DOSY ¹H NMR experiment on complex 9a.

The coordination of acetonitrile was also confirmed by $2D^{-15}N$ -HMBC NMR experiment (Figure S3). Chemical shifts were referred to NH₃ liquid at 25°C. If ¹⁵N is referred to NH₃ liquid at 25°C (0.0 ppm), the ¹⁵N chemical shit in MeNO₂ is 380.2 ppm. We observed two ¹⁵N atoms at 211 and 147 ppm (-169.2 and -233.2 ppm with MeNO₂ as reference).

The chemical shift at 211 ppm correlated with aromatic protons from the 2-phenyl-pyridine ligand (8.60 / 7.91 / 7.22 ppm) and with the aliphatic protons from the pentamethylcyclopentadienyl fragment. Such nitrogen chemical shift is typical of pyridine rings.²²

The chemical shift at 147 ppm correlated with aliphatic protons from the acetonitrile (at 2.23 ppm) and the pentamethylcyclopentadienyl fragment (at 1.66 ppm). Such nitrogen chemical shift is typical for a coordinated nitrile,²³ free acetonitrile having a chemical shift at 243 ppm.²⁴

Moreover, considering the ¹³C NMR spectrum of **9a** in CD_2Cl_2 , chemicals shifts were observed at 4.30 (C_I) and 118.6 (C_{IV}) ppm whereas a free acetonitrile molecule would have carbons shifting at 1.97 (C_I) and 116.90 (C_{IV}) ppm. Finally, the pentamethylcyclopentadienyl fragment and its 15 protons correlated with both nitrogens through 4 bonds.

Figure S3. 2D-¹⁵N-HMBC NMR experiment on complex 9a.

VI) Preliminary study of the reaction mechanism.

Regarding the reaction mechanism, two pathways may be considered for the hydrosilylation of imines catalysed by Ir(III) pre-catalyst **1**.

A first one would be based on the Chalk-Harrod mechanism.²⁵ It may start by the activation of the complex **1** by NaBArF₂₄ salt which displaces the chloride ligand and affords the cationic catalyst **8** (Scheme S1). The latter may activate the triethylsilane by oxidative addition to afford intermediate **A** according to previous calculations.^{26a} In the past, Ir–hydrido intermediate **3** (Scheme 1) was also isolated and may be a key species for the transfer of the hydritic H atom to the electrophilic imine substrate. In the next step, species **A** may further coordinate the imine reagent **4b**²⁷ thanks to the ring-slippage of Cp* ligand and leads to intermediate **B** (Scheme S1). Such catalyst activation by shifting from a η^5 to η^3 coordination mode of the Ir(III) to the Cp* was already calculated for the hydrosilylation of terminal alkynes by Ir(III) catalyst.^{26a} In addition, Crabtree et al. proposed recently the activation of an Ir(III) catalyst by loss of a cyclopentadienyl ligand.^{26b} From intermediate **B**, the insertion of the imine C=N bond into the Ir-Si bond shall allow the formation of intermediate **C** (Scheme S1). Finally, a reductive elimination step can afford the reaction product and releases catalytic intermediate **8**.

Scheme S1. Proposed reaction pathway 1 for the hydrosilylation of imines using Ir(III) catalyst 1.

On the basis of a possible activating role of the silane,²⁸ a second reaction pathway can be considered (Scheme S2). Starting from complex **8**, the triethylsilane may coordinate the iridium through a single Ir-HSiEt₃ sigma bond^{28a,b} like in intermediate **D**, or through a threecenter, two-electron "agostic" bond as displayed in intermediate **E**.²⁹ In the meantime, imine reagent **4b** would be activated by the electrophilic silicium to lead to the cleavage of Si-H bond and afford silyliminium ion **G** along with neutral iridium hydride **F**. We noticed a "push-pull" intermediate like **D** was recently highlighted for the hydrosilylation of ketones with another Ir(III) catalyst^{28a,b} and species **I** was very similar to previously observed Irhydrido intermediate **3** (Scheme 1). Finally, the reaction of hydride species **F** with silyliminium **G** would afford the corresponding silylamine and cationic complex **8**.

Scheme S2. Proposed reaction pathway 2 for the hydrosilylation of imines using Ir(III) catalyst **1**.

By performing an ESI-MS analysis of the reaction mixture issued from the hydrosilylation of ketimine **4b**, we could characterized complex **8a** along with the hydrolysed reaction product **5b** (see manuscript, Figure 1).

When $BArF_{24}$ complex **8a** (or a BF_4 counterpart) was prepared in-situ and allowed to react with a stoechiometric amount of triethylsilane, the ¹H NMR analysis of the resulting sample showed a mixture of several mono and dihydride species whose ratios evolved within 14 hours (Figures S4 and S5). A chemical shift around 4.6 ppm could have been attributed to the presence of hydrogen but T1 (¹H) measurements clearly stated no hydrogen was coordinated to the iridium.³⁰

Figure S4. ¹H NMR spectra along time at 300 K of a stoichiometric mixture of complex **8a** and Et₃SiH.

Figure S5. ¹H NMR spectra at 300 K of a stoichiometric mixture of complex 8a and Et₃SiH.

²⁹Si experiments (INEPT et DEPT45) showed a single silicon species at -22 ppm coupling with 6 protons (Figures S6 and S7).

To summarize, we didn't see any triethylsilane oxidative addition to the iridium, nor Si– $H_{bridged}$ –Ir species.^{25a} At this stage, further investigations on the reaction mechanism proved to be difficult.

Figure S6. ²⁹Si DEPT45 experiment at 300 K of a stoichiometric mixture of complex **8** and Et_3SiH .

Figure S7. ²⁹Si INEPT experiment at 300 K of a stoichiometric mixture of complex **8** and Et_3SiH .

VII) References

[1] a) W. Iali, F. La Paglia, XF. Le Goff, D. Sredojevic, M. Pfeffer, J.-P. Djukic, *Chem. Commun.*, 2012, 48, 10310–10312; b) J.-P. Djukic, W. Iali, M. Pfeffer, X.-F. LeGoff, *Chem. Eur. J.*, 2012, 18, 6063–6078; c) J.-P. Djukic, W. Iali, M. Pfeffer, X.-F. LeGoff, *Chem. Commun.*, 2011, 47, 3631–3633; d) J.-P. Djukic, C. Boulho, D. Sredojevic, C. Scheeren, S. Zaric, L. Ricard, M. Pfeffer, *Chem. Eur. J.*, 2009, 15, 10830–10842; e) C. Scheeren, F. Maasarani, A. Hijazi, J.-P. Djukic, M. Pfeffer, S. D. Zaric, X.-F. LeGoff, L. Ricard, *Organometallics*, 2007, 26, 3336–3345.

[2] a) W. E. Buschmann, J. S. Miller, *Inorganic Syntheses*, 2002, 33, 83-91; b) N. A. Yakelis,
R. G. Bergman, *Organometallics*, 2005, 24, 3579-3581; c) M. Brookhart, B. Grant, A. F.
Volpe, *Organometallics*, 1992, 11, 3920-3922.

[3] J. S. M. Samec, J. E. Backvall Chem. Eur. J., 2002, 8, 2955-2961.

[4] A. V. Malkov, S. Stončius, K. N. MacDougall, A. Mariani, G. D. McGeoch, P. Kočovský, *Tetrahedron*, 2006, **62**, 264-284.

[5] Y. Yamamoto, T. Koizumi, K. Katagiri, Y. Furuya, H. Danjo, T. Imamoto, K. Yamaguchi, *Org. Lett.*, 2006, **8**, 6103–6106.

[6] C. L. Ciana, R. J. Phipps, J. R. Brandt, F. M. Meyer, M. J. Gaunt, *Angew. Chem. Int. Ed.*, 2011, **50**, 458–462.

[7] J. Barluenga, A. Jimenez-Aquino, F. Aznar, C. Valdes, J. Am. Chem. Soc. 2009, 131, 4031-4041.

[8] Y. Schramm, F. Barrios-Landeros, A. Pfaltz, Chem. Sci. 2013, 4, 2760-2766.

[9] D. Blanco-Ania, P. H. H. Hermkens, L. A. J. M. Sliedregt, H. W. Scheeren, F. P. J. T. Rutjes, *Tetrahedron*, 2009, **65**, 5393-5401.

[10] S. E. Denmark, N. Nakajima, C. M. Stiff, O. J.-C. Nicaise, M. Kranz, *Adv. Synth. Catal.*, 2008, **350**, 1023-1045.

[11] K. M. Oberg, T. Rovis, J. Am. Chem. Soc. 2011, 133, 4785-4787.

[12] D. W. Ma, Q. Cai, H. Zhang, Org. Lett. 2003, 5, 2453-2455.

[13] S. Werkmeister, K. Junge, M. Beller, Green Chem. 2012, 14, 2371-2374.

[14] C. C. Lee, S. T. Liu, Chem. Commun., 2011, 47, 6981–6983.

[15] A. Kumar, A. G. Samuelson, Eur. J. Org. Chem., 2011, 951–959.

[16] M. Zhang, H. Yang, Y. Zhang, C. Zhu, W. Li, Y. Cheng, H. Hu, *Chem. Commun.*, 2011, **47**, 6605–6607.

[17] L. L. R. Lorentz-Petersen, P. Jensen, R. Madsen, Synthesis, 2009, 4110–4112.

[18] N. Shankaraiah, N. Markandeya, V. Srinivasulu, K. Sreekanth, Ch. S. Reddy, L. S. Santos, A. Kamal, *J. Org. Chem.*, 2011, **76**, 7017–7026.

[19] T. Itoh, K. Nagata, M. Miyazaki, H. Ishikawa, A. Kurihara, A. Ohsawa, *Tetrahedron*, 2004, **60**, 6649–6655.

[20] F. Ozawa, H. Okamoto, S. Kawagishi, S. Yamamoto, T. Minami, M. Yoshifuji, J. Am. Chem. Soc. 2002, **124**, 10968-10969.

[21] E. Byun, B. Hong, K. A. D. Castro, M. Lim, H. Rhee, J. Org. Chem. 2007, 72, 9815-9817.

[22] J. Mason, L. F. Larkworthy, E. A. Moore, Chem. Rev., 2002, 102, 913-934.

[23] a) B. Milani, A. Marson, E. Zangrando, G. Mestroni, J. M. Ernsting, C. J. Elsevier, *Inorganica Chimica Acta*, 2002, **327**, 188–201; b) K. V. Luzyanin, M. Galanski, V. Yu. Kukushkin, D. A. Garnovskii, A. J.L. Pombeiro, *Inorganica Chimica Acta*, 2008, **361**, 1738–1743.

[24] a) Martin, G. J., Martin, M. L., Gouesnard, J. P. (1981), "15N-NMR spectroscopy"in "NMR basic principles and progress", Vol. 18, Springer, Berlin; b) Berger, S., Braun, S., Kalinowski, H.-O. (1997), NMR spectroscopy of the non-metallic elements, John Wiley & Sons, Chichester.

[25] a) A. J. Chalk, J. F. Harrod, J. Am. Chem. Soc, 1967, 89, 1640-1647; b) I. Ojima, N. Clos, R. J. Donovan, P. Ingallina, Organometallics, 1990, 9, 3127-3133; c) B. M. Trost, Z. T. Ball, Synthesis, 2005, 853-887; d) C. Vicent, M. Viciano, E. Mas-Marzá, M. Sanaú, E. Peris, Organometallics, 2006, 25, 3713-3720.

[26] a) V. S. Sridevi, W. Y. Fan, W. K. Leong, *Organometallics*, 2007, **26**, 1157-1160; b) J. Campos, U. Hintermair, T. P. Brewster, M. K. Takase, R. H. Crabtree, *ACS Catal.*, 2014, **4**, 973-985.

[27] H. Kim, K. Shin, S. Chang, J. Am. Chem. Soc., 2014, 136, 5904-5907.

[28] a) T. T. Metsänen, P. Hrobárik, H. F. T. Klare, M. Kaupp, M. Oestreich, J. Am. Chem. Soc., 2014, 136, 6912-6915; b) W. Wang, P. Gu, Y. Wang, H. Wei, Organometallics, 2014, 33, 847-857; c) M. Iglesias, P. J. Sanz-Miguel, V. Polo, F. J. Fernández-Alvarez, J. J. Pérez-Torrente, L. A. Oro, Chem. Eur. J., 2013, 19, 17559-17566; d) J. Yang, P. S. White, M. Brookhart J. Am. Chem. Soc., 2008, 130, 17509-17518.

[29] a) L. P. Szajek, J. R. Shapley, *Organometallics*, 1994, **13**, 1395-1403; b) R. McDonald, M. Cowie, *Organometallics*, 1990, **9**, 2468-2478.

[30] a) R. H. Crabtree, M. Lavin, L. Bonneviot, J. Am. Chem. Soc., 1986, **108**, 4032-4037; b)

T. Komuro, K. Furuyama, T. Kitano, H. Tobita, J. Organomet. Chem., 2014, 751, 686-694.

VIII) ¹H, ¹³C NMR spectra of isolated compounds.

IX) HRMS spectra.

<u>YC-449</u>											
YC-449#4-136 RT: 0.04-1.00 AV: 133 NL: 2.35E7					m/z	Intensity	Relative	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
T: FTMS + p ESI Full ms [200.00-1000.00]	492 14484				476,09976	3438859	14,15	476,09848	2,69	14	C21 H17 N Ir
100 ₇	102.11101				478,11413	4768005,5	19,62	478,11413	0,01	13	C21 H19 N Ir
05	C21 H23 N Ir				480,14266	14420802	59,35	480,14309	-0,9	11	C21 H23 N [191]Ir
					482,14489	24296146	100	482,14543	-1,11	11	C21 H23 N Ir
90					483,1483	5415707,5	22,29	483,15325	-10,24	10,5	C21 H24 N Ir
85											
80			\								
75				\square							
70			N	Y	-						
65			, lr′ ⊕								
			Й р								
80 8			₿₿	ArF ₂₄							
. 등 55-		\sim	8a								
5 1 9 50-											
35-											
30											
25											
20											
15											
10											
259.10761 	506.14	548									
5 370.16496	447 24584	552.1869	1 . <u>1</u> 3519	2	an 22218	750.070.00	8	60.44473		000 40004	
╶╴╶╡╟╢╫╻╻╷╟╎╷╴╴╎╎┠╶╟╎╱───	1.1.00								ND 7 40000	1000 /010191	
─────────────────────────────────────		.	الإ ب بد ا	• • • • • • • •	30.33210	(56.3/992 			327.48360	990,40031	

Service de spectrometrie de masse - Institut de Chimie - Strasbourg - UMR 7177 CNRS / ULP

Service de spectrometrie de masse - Institut de Chimie - Strasbourg - UMR 7177 CNRS / ULP

8:45:46 AM

YC-575 pos											
					m/z	Intensity	Relative	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
YC-575-pos- #85_RT: 0.63_AV: 1_NL: 2.51E7					480,14217	6527281,5	24,03	480,14235	-0,39	11,5	C22 H231r
1. F 1M3 + p E31Full115 [200.00-1100.00]	523,17072	2			482,14431	11166059	41,1	482,14543	-2,32	11	C21 H23 N Ir
	C23 H26 N2 Ir				521,16862	15905343	58,54	521,16964	-1,95	12	C23 H26 N2 [191]Ir
95					523,17056	27168354	100	523,17197	-2,7	12	C23 H26 N2 Ir
			9b		524,17414	6402137	23,56				
90-			0.0								
		N (⊕ .Cp*								
80)	r								
			NCMe								
75-		E E)								
70 -		S S	bF ₆								
65-	X										
ω ⁶⁰	(γ)										
Че 55-	7										
₹_50											
	482 14441										
	402.14441										
35											
25											
20											
15											
10											
5-437.	19382	10303						1057.2141	1		
282.89224 381.29663		638.4008	8 703.45251	819.4796	58 888.134	158	999.2 <u>57</u> 39				
200 300 400	500	600	700	800	9	50 0	1000	· · · · · ·	1100		
		m/z									

YC	575 neg													
								m/z	Intensity	Relative	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
VO 5								196,89716	747404,4	1,86				
T: ET	MS - p ESI Full ms (50.00-600.00)							198,89754	523060,1	1,3				
10	0_	234.89	442					215,89581	638477,9	1,59				
		F6 Sb			01-			234,8944	40233136	100	234,89479	-1,66	-1,5	F6 S b
9	5			~	90			236,89469	30342968	75,42	236,89518	-2,07	-1,5	F6 [123]Sb
			- Í											
9			Ľ	∕_N ⊕	Co*									
				- Ir	Ср									
6	5-1			\leq	VCMe									
F														
				Sb	F ₆									
7	5				0									
7														
F	5													
e	o													
nce														
g g	5													
ng ,	Ē													
- e														
_ <u>fe</u> 4	5													
<u>щ</u>														
4	0													
	5													
-														
3	0-]													
	5													
-	En													
1	5 -													
	2	23.51151												
1	0													
	5 ¹													
		9720 \	283.263	70 006 4	0001	001.000		10.01005						
	0	II. A A A A A A A A A A A A A A A A A A		ا. 2∠0 مرسطانتيانيا	uuuz h hiritenthi	381.2294	ь 4 Проциона	14.2.040.95 http://www.use						
	50 100 150 20	jo	250	300	350		400	450	50	0	550	600		
				m	/Z									

<u>C-576 neg</u>											
					m/z	Intensity	Relative	Theo. Mass	Delta (ppm)	RDB equiv.	Compositio
C-576 neg #33-81RT:_0.25-0.60	AV: 49 NL: 7.15E7				61,98712	272244,5	0,37				
FTMS - p E SI Full ms [50.00-400.0	144.06964				144,95976	365177,9	0,5				
100 -	144.96364				144,96364	73294232	100	144,96363	0,05	-1,5	F6 P
	F6 P	9c			144,97033	288089,6	0,39				
95					283,26369	485555,8	0,66				
30		⊕_Cp*									
85		lr Ir									
		NCM	9								
80-		0									
		→ PF ₆									
75-											
70											
70											
65-											
60											
-55											
50											
45-											
40-											
35-											
30-											
=											
25											
20-											
15											
10-											
5-											
161 98712 100 0503	1 100 96166 1597	51280 2017	1028 234 89410 2	55 23244 2	83.26370 311 169	19 330 1	0033	373 00710			
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				11111	11111			
60 80 100	1201401	60180200	220 240	260	280300	32034	4036	0380	400		

<u>YC 510p</u>												
						m/z	Intensity	Relative	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
VC 510p #47- PT-0 64-AV/-1-NI						122,09731	25912062	11,78				
T:-FTMS + p ESI Full ms [100.00-500.00]						212,14334	2389645,3	1,09	212,14338	-0,18	7,5	C15 H18 N
	226.1587	78				224,14358	12905319	5,87	224,14338	0,92	8,5	C16 H18 N
	C16 H20 N			\wedge		226,15879	219900192	100	226,15903	-1,06	7,5	C16 H20 N
95-		5	e			227,16211	37635492	17,11	227,16283	-3,18	3	C11 H21 O2 N3
			HN	\searrow								
90-												
85-		Í										
		Į										
80			\sim									
75-												
70-												
65												
8 -												
₽ 50-												
40-												
35-												
25												
20-												
15												
122.09731												
10-												
5												
159.72447 195.5	57411	260,11996	304.17	245	349.8752	1 3	98.28659		451.30991	484.34225		
100 150	200	250	300		350		400		450	51	, 	
			m/z									

YC 502 p															
									m/z	Intensity	Relative	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
YC-502p #2 RT: 0.03 AV:	1 NL: 5.33E	8							134,09733	7551157	2,06				
T: FTMS + p ESIFull ms [10	10.00-500.00]	212	14326						210,12801	40529800	11,06	210,12773	1,34	8,5	C15 H16 N
100-3		C15 H19	2N						212,14325	366542272	100	212,14338	-0,59	7,5	C15 H18 N
95						<u></u>			213,14658	58820500	16,05	213,14718	-2,81	3	C10 H19 O2 N3
					7c				449,25814	9836064	2,68	449,25791	0,51	-1	C16 H39 O11 N3
90-															
85															
80-															
75					Ť										
75															
70-															
85															
60-															
8 00 T															
₽ 50 -															
40-															
35-															
30-															
25-															
20-															
15-															
10-															
5-	150.01005		228.1382	6											
0-1	159.64995 	200.10718	u	262 	2.14362	3	18.18503	349.59570	391	28387	4	49.25818 	490.29437		
100	150	200		250				350		400		450	500)	