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 14 

Specific quantification methods of NO, NO2 and N2 15 

The mass signal of a given molecule (M) at m/z ( M
/ zmI ) could be obtained by eqn. 16 

S(1): 17 

M
/MM/

M
/ zmzmzm CI                                                  S(1) 18 

where ηm/z is the detection constant of the mass spectrometer at m/z; CM is the 19 

concentration of M; σM is the total ionization cross section for M at 70 eV (the 20 

electron beam energy used in our mass spectrometer ionizer); M
/ zm is the ratio of the 21 

partial ionization cross section of M generating the ion fragment with m/z to its total 22 

ionization cross section at 70 eV. σM could be acquired from the website of National 23 

Institute of Standards and Technology (NIST)
1
 and M

/ zm could be obtained from our 24 
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MS software. 1 

   The mass signals at m/z = 44 and 46 (I44 and I46), derived from single contributor, 2 

are attributed to N2O and NO2, respectively, 3 
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However, the mass signal at m/z = 30 (I30) derives from the contributions of N2O, NO2 6 

and NO, being the sum of ON
30

2I , 2NO
30I and NO

30I , 7 
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Their individual contributions, ON
30

2I , 2NO
30I and NO

30I , can be expressed as follows: 9 
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According to eqns. S(2) and S(5), we can get 13 
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ON
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Similarly, according to eqns. S(3) and S(6), eqn. S(10) was obtained 17 

46
NO
30 35.32 II                                                       S(10) 18 

Therefore, based on eqns. S(4), S(9) and S(10), NO
30I was obtained: 19 

)35.3()37.0( 464430
NO
30 IIII                                           S(11) 20 

According to eqns. S(2) and S(7), we can get 21 
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eqn. S(12) could be simplified as 3 
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76.0
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Substituting eqn. S(11) into eqn. S(13), 5 
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where ON2
C and I30, I44 & I46 could be simultaneously acquired by the FT-IR 7 

spectrometer and mass spectrometer; therefore, CNO could be obtained from eqn. 8 

S(14). 9 

Similarly, the expressions of 
2NOC and

2NC were yielded: 10 
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For all the reactions to be discussed below, the outlet gaseous products were 13 

on-line analyzed by the FT-IR spectrometer and the mass spectrometer. 14 

 15 
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Fig. S1. OZCO measurements of gaseous NH3 over AgMn/HZ catalyst to verify the 2 

reliability of N2 selectivity derived from eqn. (5). Time courses for (a) NH3 3 

conversion, (b) N2O concentration, (c) MS signals, (d) N2 concentration and 4 

(e) N2 and N2O selectivities during OZCO of gaseous NH3. The N2 5 

selectivity was derived from the direct measurement (eqn. (6)). Conditions: 6 

0.2 g of AgMn/HZ catalyst, 500 SCCM of total flow rate with 1000 ppmv of 7 

NH3 and 500 ppmv of O3, 20 vol.% of O2 and Ar balanced. 8 

Fig. S2. NH3 concentrations of HZ, Ag/HZ, Mn/HZ and AgMn/HZ catalysts during 9 

TPD measurements after 90-min OZCO of gaseous NH3. OZCO conditions: 10 

0.1 g of catalysts, feed gas of 250 SCCM, containing 530 ppmv of NH3, 450 11 

ppmv of O3, 20 vol.% of O2 and balanced by N2. TPD conditions: 0.03 g of 12 

the used catalysts, 100 SCCM of He, 10 °C
.
min

-1
. 13 

Fig. S3. MS signals of (a) HZ, (b) Ag/HZ, (c) Mn/HZ and (d) AgMn/HZ catalysts 14 

during TPD measurements after 90-min OZCO of gaseous NH3. OZCO and 15 

TPD conditions are the same as those in Fig. S2. 16 

Fig. S4. NH3 concentrations of (a) HZ and (b) Ag/HZ catalysts during TPD 17 

measurements after 30-min OZCO of adsorbed NH3. NH3 adsorption 18 

conditions: 0.1 g of catalysts, 540 ppmv of NH3 for 25-min adsorption; 19 

OZCO conditions: a feed gas of 250 SCCM containing 450 ppmv of O3, 20 20 

vol.% of O2 and balanced by He. TPD conditions: 0.03 g of the used catalysts, 21 

100 SCCM of He, 10 °C
.
min

-1
. 22 
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Fig. S5. MS signals of (a) HZ, (b) Ag/HZ, (c) Mn/HZ and (d) AgMn/HZ catalysts 1 

during TPD measurements after 30-min OZCO of adsorbed NH3. NH3 2 

adsorption, OZCO and TPD conditions are the same as those in Fig. S4. 3 

4 
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Fig. S1 1 
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Fig. S1 1 
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Fig. S2 1 
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Fig. S3 1 
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Fig. S3 1 
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Fig. S4 1 
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Fig. S5 1 
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Fig. S5 1 
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