| 1        | Ozone catalytic oxidation for ammonia removal from simulated air at                                                                                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | room temperature                                                                                                                                                          |
| 3        | Yang Liu <sup>a</sup> , Xiao-Song Li <sup>a</sup> , Jing-Lin Liu <sup>a</sup> , Chuan Shi <sup>a</sup> , Xiaobing Zhu <sup>a,</sup> *, Ai-Min Zhu <sup>a</sup> ,          |
| 4        | Ben WL. Jang <sup>b,</sup> *                                                                                                                                              |
| 5        | <sup>a</sup> Laboratory of Plasma Physical Chemistry, Dalian University of Technology, 116024 Dalian,                                                                     |
| 6        | China                                                                                                                                                                     |
| 7        | <sup>b</sup> Department of Chemistry, Texas A&M University-Commerce, PO Box 3011, Commerce, TX                                                                            |
| 8        | 75429, United States                                                                                                                                                      |
| 9        |                                                                                                                                                                           |
| 10<br>11 | * Corresponding authors. Fax: +86-411-84706094 (X. Zhu), +1-903-468-6020 (B.WL. Jang).<br>E-mail addresses: vzhu@dlut.edu.cn (X. Zhu). Ben Jang@tamuc.edu (B.W. J. Jang). |
| 11       | E-mail addresses. Azhu@diut.edu.eli (A. Zhu), Ben.Jang@taniuc.edu (B. wL. Jang).                                                                                          |
| 13       | Supplementary data                                                                                                                                                        |
| 14       |                                                                                                                                                                           |
| 15       | Specific quantification methods of NO, $NO_2$ and $N_2$                                                                                                                   |
| 16       | The mass signal of a given molecule (M) at $m/z$ ( $I_{m/z}^{M}$ ) could be obtained by eqn.                                                                              |
| 17       | S(1):                                                                                                                                                                     |
| 18       | $I_{m/z}^{\mathbf{M}} = \eta_{m/z} \cdot C_{\mathbf{M}} \cdot \sigma_{\mathbf{M}} \cdot \beta_{m/z}^{\mathbf{M}} $ S(1)                                                   |
| 19       | where $\eta_{m/z}$ is the detection constant of the mass spectrometer at $m/z$ ; $C_{\rm M}$ is the                                                                       |
| 20       | concentration of M; $\sigma_{\rm M}$ is the total ionization cross section for M at 70 eV (the                                                                            |
| 21       | electron beam energy used in our mass spectrometer ionizer); $\beta_{m/z}^{M}$ is the ratio of the                                                                        |
| 22       | partial ionization cross section of M generating the ion fragment with $m/z$ to its total                                                                                 |
| 23       | ionization cross section at 70 eV. $\sigma_{\rm M}$ could be acquired from the website of National                                                                        |
| 24       | Institute of Standards and Technology (NIST) <sup>1</sup> and $\beta_{m/z}^{M}$ could be obtained from our                                                                |

1 MS software.

2 The mass signals at 
$$m/z = 44$$
 and 46 ( $I_{44}$  and  $I_{46}$ ), derived from single contributor,

3 are attributed to  $N_2O$  and  $NO_2$ , respectively,

4 
$$I_{44} = \eta_{44} \cdot C_{N_2O} \cdot \sigma_{N_2O} \cdot \beta_{44}^{N_2O}$$
 S(2)

5 
$$I_{46} = \eta_{46} \cdot C_{NO_2} \cdot \sigma_{NO_2} \cdot \beta_{46}^{NO_2}$$
 S(3)

6 However, the mass signal at m/z = 30 ( $I_{30}$ ) derives from the contributions of N<sub>2</sub>O, NO<sub>2</sub>

7 and NO, being the sum of 
$$I_{30}^{N_2O}$$
,  $I_{30}^{NO_2}$  and  $I_{30}^{NO}$ ,

8 
$$I_{30} = I_{30}^{N_2 O} + I_{30}^{NO_2} + I_{30}^{NO}$$
 S(4)

9 Their individual contributions,  $I_{30}^{N_2O}$ ,  $I_{30}^{NO_2}$  and  $I_{30}^{NO}$ , can be expressed as follows:

10 
$$I_{30}^{N_2O} = \eta_{30} \cdot C_{N_2O} \cdot \sigma_{N_2O} \cdot \beta_{30}^{N_2O}$$
 S(5)

11 
$$I_{30}^{NO_2} = \eta_{30} \cdot C_{NO_2} \cdot \sigma_{NO_2} \cdot \beta_{30}^{NO_2}$$
 S(6)

12 
$$I_{30}^{NO} = \eta_{30} \cdot C_{NO} \cdot \sigma_{NO} \cdot \beta_{30}^{NO}$$
 S(7)

## 13 According to eqns. S(2) and S(5), we can get

14 
$$I_{30}^{N_2O} = \frac{\eta_{30}}{\eta_{44}} \cdot \frac{\beta_{30}^{N_2O}}{\beta_{44}^{N_2O}} \cdot I_{44}$$
 S(8)

15 where 
$$\frac{\eta_{30}}{\eta_{44}} \approx \left(\frac{30}{44}\right)^{-0.5} = 1.21$$
,  $\beta_{30}^{N_2O} = 19\%$ ,  $\beta_{44}^{N_2O} = 62\%$ , thereby  
16  $I_{30}^{N_2O} = 0.37 \cdot I_{44}$  S(9)

17 Similarly, according to eqns. S(3) and S(6), eqn. S(10) was obtained

18 
$$I_{30}^{NO_2} = 3.35 \cdot I_{46}$$
 S(10)

19 Therefore, based on eqns. S(4), S(9) and S(10),  $I_{30}^{NO}$  was obtained:

20 
$$I_{30}^{NO} = I_{30} - (0.37 \cdot I_{44}) - (3.35 \cdot I_{46})$$
 S(11)

21 According to eqns. S(2) and S(7), we can get

1 
$$C_{\rm NO} = \frac{\eta_{44}}{\eta_{30}} \cdot \frac{\sigma_{\rm N_2O}}{\sigma_{\rm NO}} \cdot \frac{\beta_{44}^{\rm N_2O}}{\beta_{30}^{\rm NO}} \cdot \frac{I_{30}^{\rm N_2O}}{I_{44}} \cdot C_{\rm N_2O}$$
 S(12)

2 where 
$$\frac{\eta_{44}}{\eta_{30}} \approx \left(\frac{44}{30}\right)^{-0.5} = 0.83$$
,  $\sigma_{N_2O} = 3.7 \times 10^{-16} \text{ cm}^2$ ,  $\sigma_{NO} = 2.8 \times 10^{-16} \text{ cm}^2$ ,  $\beta_{44}^{N_2O} = 62\%$ ,  $\beta_{30}^{NO} = 88\%$ ,

3 eqn. S(12) could be simplified as

4 
$$C_{\rm NO} = 0.76 \cdot C_{\rm N_2O} \cdot \frac{I_{30}^{\rm NO}}{I_{44}}$$
 S(13)

5 Substituting eqn. S(11) into eqn. S(13),

6 
$$C_{\rm NO} = 0.76 \cdot C_{\rm N_2O} \cdot \left(\frac{I_{30}}{I_{44}} - 0.37 - 3.35 \cdot \frac{I_{46}}{I_{44}}\right)$$
 S(14)

7 where  $C_{N_2O}$  and  $I_{30}$ ,  $I_{44}$  &  $I_{46}$  could be simultaneously acquired by the FT-IR 8 spectrometer and mass spectrometer; therefore,  $C_{NO}$  could be obtained from eqn. 9 S(14).

10 Similarly, the expressions of  $C_{NO_2}$  and  $C_{N_2}$  were yielded:

11 
$$C_{\text{NO}_2} = 3.03 \cdot C_{\text{N}_2\text{O}} \cdot \frac{I_{46}}{I_{44}}$$
 S(15)

12 
$$C_{N_2} = 0.79 \cdot C_{N_2O} \cdot \left(\frac{I_{28}}{I_{44}} - 0.14\right)$$
 S(16)

For all the reactions to be discussed below, the outlet gaseous products wereon-line analyzed by the FT-IR spectrometer and the mass spectrometer.

15

16 Reference

| 2  | Fig. S1. OZCO measurements of gaseous NH3 over AgMn/HZ catalyst to verify the           |
|----|-----------------------------------------------------------------------------------------|
| 3  | reliability of $N_2$ selectivity derived from eqn. (5). Time courses for (a) $NH_3$     |
| 4  | conversion, (b) $N_2O$ concentration, (c) MS signals, (d) $N_2$ concentration and       |
| 5  | (e) $N_2$ and $N_2O$ selectivities during OZCO of gaseous NH <sub>3</sub> . The $N_2$   |
| 6  | selectivity was derived from the direct measurement (eqn. (6)). Conditions:             |
| 7  | 0.2 g of AgMn/HZ catalyst, 500 SCCM of total flow rate with 1000 ppmv of                |
| 8  | $NH_3$ and 500 ppmv of $O_3$ , 20 vol.% of $O_2$ and Ar balanced.                       |
| 9  | Fig. S2. $NH_3$ concentrations of HZ, Ag/HZ, Mn/HZ and AgMn/HZ catalysts during         |
| 10 | TPD measurements after 90-min OZCO of gaseous NH <sub>3</sub> . OZCO conditions:        |
| 11 | 0.1 g of catalysts, feed gas of 250 SCCM, containing 530 ppmv of $NH_3$ , 450           |
| 12 | ppmv of $O_3$ , 20 vol.% of $O_2$ and balanced by $N_2$ . TPD conditions: 0.03 g of     |
| 13 | the used catalysts, 100 SCCM of He, 10 °C'min <sup>-1</sup> .                           |
| 14 | Fig. S3. MS signals of (a) HZ, (b) Ag/HZ, (c) Mn/HZ and (d) AgMn/HZ catalysts           |
| 15 | during TPD measurements after 90-min OZCO of gaseous NH <sub>3</sub> . OZCO and         |
| 16 | TPD conditions are the same as those in <b>Fig. S2.</b>                                 |
| 17 | Fig. S4. $NH_3$ concentrations of (a) HZ and (b) Ag/HZ catalysts during TPD             |
| 18 | measurements after 30-min OZCO of adsorbed NH <sub>3</sub> . NH <sub>3</sub> adsorption |
| 19 | conditions: 0.1 g of catalysts, 540 ppmv of $NH_3$ for 25-min adsorption;               |
| 20 | OZCO conditions: a feed gas of 250 SCCM containing 450 ppmv of O <sub>3</sub> , 20      |
| 21 | vol.% of $O_2$ and balanced by He. TPD conditions: 0.03 g of the used catalysts,        |
| 22 | 100 SCCM of He, 10 °C min <sup>-1</sup> .                                               |

| 1 | Fig. S5. MS signals of (a) HZ, (b) Ag/HZ, (c) Mn/HZ and (d) AgMn/HZ catalysts           |
|---|-----------------------------------------------------------------------------------------|
| 2 | during TPD measurements after 30-min OZCO of adsorbed NH <sub>3</sub> . NH <sub>3</sub> |
| 3 | adsorption, OZCO and TPD conditions are the same as those in Fig. S4.                   |
| 4 |                                                                                         |









-



## 







