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 14 

Specific quantification methods of NO, NO2 and N2 15 

The mass signal of a given molecule (M) at m/z ( M
/ zmI ) could be obtained by eqn. 16 

S(1): 17 

M
/MM/

M
/ zmzmzm CI                                                  S(1) 18 

where ηm/z is the detection constant of the mass spectrometer at m/z; CM is the 19 

concentration of M; σM is the total ionization cross section for M at 70 eV (the 20 

electron beam energy used in our mass spectrometer ionizer); M
/ zm is the ratio of the 21 

partial ionization cross section of M generating the ion fragment with m/z to its total 22 

ionization cross section at 70 eV. σM could be acquired from the website of National 23 

Institute of Standards and Technology (NIST)
1
 and M

/ zm could be obtained from our 24 
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MS software. 1 

   The mass signals at m/z = 44 and 46 (I44 and I46), derived from single contributor, 2 

are attributed to N2O and NO2, respectively, 3 

ON
44ONON4444

2

22
  CI                                               S(2) 4 

2

22

NO
46NONO4646   CI                                               S(3) 5 

However, the mass signal at m/z = 30 (I30) derives from the contributions of N2O, NO2 6 

and NO, being the sum of ON
30

2I , 2NO
30I and NO

30I , 7 

NO
30

NO
30

ON
3030

22 IIII                                                   S(4) 8 

Their individual contributions, ON
30

2I , 2NO
30I and NO

30I , can be expressed as follows: 9 

ON
30ONON30

ON
30

2

22

2   CI                                              S(5) 10 

2

22

2 NO
30NONO30

NO
30   CI                                              S(6) 11 

NO
30NONO30

NO
30   CI                                                S(7) 12 

According to eqns. S(2) and S(5), we can get 13 

44ON
44

ON
30

44

30ON
30

2

2

2 II 







                                                  S(8) 14 

where 21.1
44

30
5.0

44

30 














, %19

ON
30

2  , %62
ON

44
2  , thereby 15 

44
ON

30 37.02 II                                                        S(9) 16 

Similarly, according to eqns. S(3) and S(6), eqn. S(10) was obtained 17 

46
NO
30 35.32 II                                                       S(10) 18 

Therefore, based on eqns. S(4), S(9) and S(10), NO
30I was obtained: 19 

)35.3()37.0( 464430
NO
30 IIII                                           S(11) 20 

According to eqns. S(2) and S(7), we can get 21 
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where 83.0
30

44
5.0

30

44 














, 216

ON cm107.3
2

 , 216
NO cm108.2  , %62

ON
44

2  , %88NO
30  , 2 

eqn. S(12) could be simplified as 3 

44

NO
30

ONNO 2
76.0

I

I
CC                                                  S(13) 4 

Substituting eqn. S(11) into eqn. S(13), 5 
















44

46

44

30
ONNO 35.337.076.0

2 I

I

I

I
CC                                     S(14) 6 

where ON2
C and I30, I44 & I46 could be simultaneously acquired by the FT-IR 7 

spectrometer and mass spectrometer; therefore, CNO could be obtained from eqn. 8 

S(14). 9 

Similarly, the expressions of 
2NOC and

2NC were yielded: 10 

44

46
ONNO 22

03.3
I

I
CC                                                   S(15) 11 














 14.079.0

44

28
ONN 22 I

I
CC                                            S(16) 12 

For all the reactions to be discussed below, the outlet gaseous products were 13 

on-line analyzed by the FT-IR spectrometer and the mass spectrometer. 14 

 15 

Reference 16 

[1] NIST, http://webbook.nist.gov/chemistry/form-ser.html, (accessed June 2014). 17 

18 

http://webbook.nist.gov/chemistry/form-ser.html


4 

 

 1 

Fig. S1. OZCO measurements of gaseous NH3 over AgMn/HZ catalyst to verify the 2 

reliability of N2 selectivity derived from eqn. (5). Time courses for (a) NH3 3 

conversion, (b) N2O concentration, (c) MS signals, (d) N2 concentration and 4 

(e) N2 and N2O selectivities during OZCO of gaseous NH3. The N2 5 

selectivity was derived from the direct measurement (eqn. (6)). Conditions: 6 

0.2 g of AgMn/HZ catalyst, 500 SCCM of total flow rate with 1000 ppmv of 7 

NH3 and 500 ppmv of O3, 20 vol.% of O2 and Ar balanced. 8 

Fig. S2. NH3 concentrations of HZ, Ag/HZ, Mn/HZ and AgMn/HZ catalysts during 9 

TPD measurements after 90-min OZCO of gaseous NH3. OZCO conditions: 10 

0.1 g of catalysts, feed gas of 250 SCCM, containing 530 ppmv of NH3, 450 11 

ppmv of O3, 20 vol.% of O2 and balanced by N2. TPD conditions: 0.03 g of 12 

the used catalysts, 100 SCCM of He, 10 °C
.
min

-1
. 13 

Fig. S3. MS signals of (a) HZ, (b) Ag/HZ, (c) Mn/HZ and (d) AgMn/HZ catalysts 14 

during TPD measurements after 90-min OZCO of gaseous NH3. OZCO and 15 

TPD conditions are the same as those in Fig. S2. 16 

Fig. S4. NH3 concentrations of (a) HZ and (b) Ag/HZ catalysts during TPD 17 

measurements after 30-min OZCO of adsorbed NH3. NH3 adsorption 18 

conditions: 0.1 g of catalysts, 540 ppmv of NH3 for 25-min adsorption; 19 

OZCO conditions: a feed gas of 250 SCCM containing 450 ppmv of O3, 20 20 

vol.% of O2 and balanced by He. TPD conditions: 0.03 g of the used catalysts, 21 

100 SCCM of He, 10 °C
.
min

-1
. 22 
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Fig. S5. MS signals of (a) HZ, (b) Ag/HZ, (c) Mn/HZ and (d) AgMn/HZ catalysts 1 

during TPD measurements after 30-min OZCO of adsorbed NH3. NH3 2 

adsorption, OZCO and TPD conditions are the same as those in Fig. S4. 3 

4 
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Fig. S1 1 
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Fig. S1 1 
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Fig. S2 1 

 2 

 3 

0 10 20 30 40 50 60 70 80

0

50

100

150

200

250

 

 

N
H

3
 C

o
n

ce
n

tr
a
ti

o
n

 (
p

p
m

v
)

Time (min)

 HZ

 Ag/HZ

 Mn/HZ

 AgMn/HZ

0

100

200

300

400

500

T
em

p
era

tu
re (

oC
)

 4 

5 



9 

 

Fig. S3 1 
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Fig. S3 1 
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Fig. S4 1 
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Fig. S5 1 
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Fig. S5 1 
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