Supporting Information for

Vanadia Supported on Mesoporous Carbon Nitride as a Highly Efficient Catalyst for Hydroxylation of Benzene to Phenol

Jie Xu *, Quan Jiang, Ting Chen, Fei Wu, Yong-Xin Li *

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Gehu Road 1, Changzhou, Jiangsu 213164, PR China

Determination of the data of catalytic conversion and selectivity

All the reagents and products are analyzed by GC equipped by a FID detector coupled with a SE-54 capillary column. After a catalytic reaction, the resultant compounds revealed by the GC profile were only CH₃CN (solvent), benzene, phenol, and benzoquinone. No biphenyl, catechol, or hydroquinone was detected. Their quantitative calculation (i.e. conversion of benzene, and selectivity to phenol) was based on an area-normalization method.

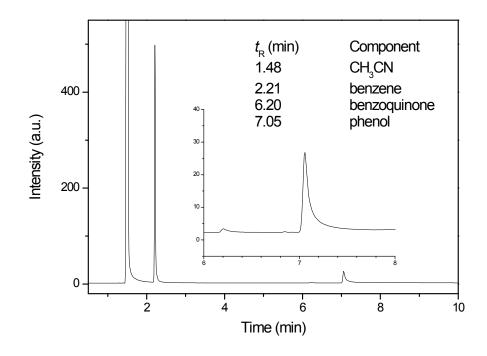


Fig. S1 A representative GC profile after the catalytic reaction.

A series of CH_3CN solutions containing benzene, phenol and benzoquinone with different concentrations were prepared. Wherein, the concentrations for the three solutes were close to ordinary values in a typical catalytic reaction of the present work. Next, the response factors (*f*) for phenol and benzoquinone on the basis of benzene were calculated as follows:

$$f_{\text{phenol}} = \frac{A_{\text{benzene}} / n_{\text{benzene}}}{A_{\text{phenol}} / n_{\text{phenol}}}, f_{\text{benzoquinone}} = \frac{A_{\text{benzene}} / n_{\text{benzene}}}{A_{\text{benzoquinone}} / n_{\text{benzoquinone}}}$$

where A, and n were the peak area of GC, and molar amount (or concentration, mol/L) of a compound, respectively.

The final conversion of benzene (*Conv.*) and selectivity to phenol (*Sel.*) were calculated as follows:

$$\begin{split} Conv. = & \frac{A_{\rm phenol} \times f_{\rm phenol} + A_{\rm benzoquinone} \times f_{\rm benzoquinone}}{A_{\rm benzene} + A_{\rm phenol} \times f_{\rm phenol} + A_{\rm benzoquinone} \times f_{\rm benzoquinone}} \\ Sel. = & \frac{A_{\rm phenol} \times f_{\rm phenol}}{A_{\rm phenol} \times f_{\rm phenol}} \,. \end{split}$$

The efficiency (E_{H2O2} or selective conversion) of H_2O_2 for the hydroxylation of benzene was calculated as follows:

$$E_{\rm H_2O_2} = \frac{n_{\rm phenol} + 2n_{\rm benzoquinone}}{n_{\rm H_2O_2, feed}} = \frac{n_{\rm benzene, feed} \times Conv. \times Sel. + 2n_{\rm benzene, feed} \times Conv. \times (1 - Sel.)}{n_{\rm H_2O_2, feed}}$$

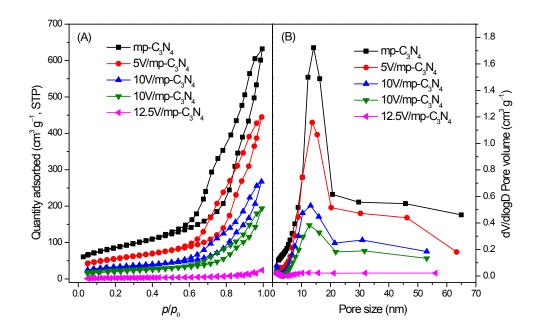


Fig. S2 N₂ adsorption-desorption isotherms (A) and pore size distributions (B) of

V/mp-C₃N₄ samples.

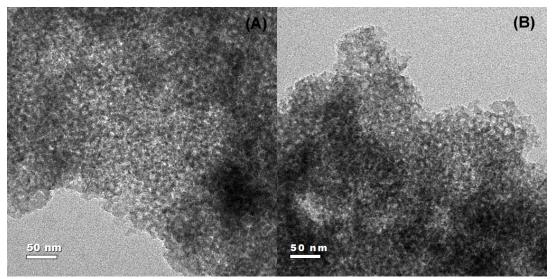


Fig. S3 TEM images of mp-C₃N₄ (A) and 10V/mp-C₃N₄ (B) materials.

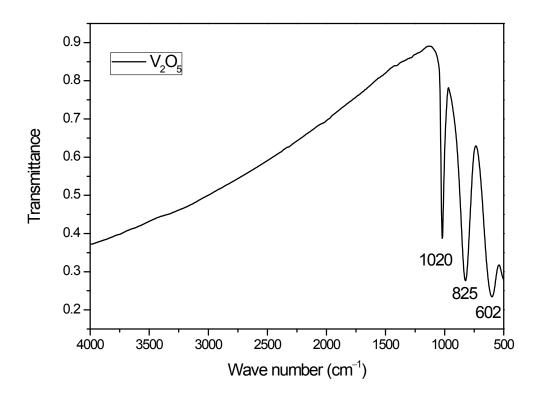


Fig. S4 FT-IR spectrum of V₂O₅.

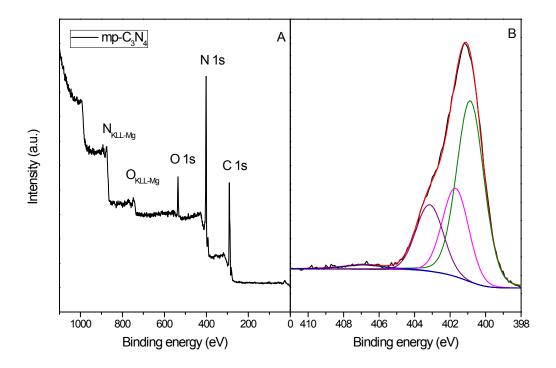
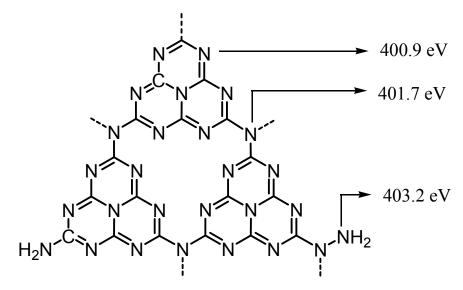



Fig. S5 XPS survey (A) and N 1s spectrum (B) of mp-C₃N₄.

Scheme S1 Various N species in mp-C₃N₄.

Entry	V _{benzene}	V _{H2O2}	$n_{\rm H2O2}/n_{\rm benzene}$	W _{catal.}	Conv.	Sel.	Yield	TOF
	(mL)	(mL)		(mg)	(%)	(%)	(%)	(h^{-1})
1	1	3	2.6	60	21.3	92.4	19.7	1.16
2	1.5	3	1.8	60	18.7	95.9	18.0	1.59
3	2	3	1.3	60	10.2	97.1	9.9	1.17
4	1.5	1	0.6	60	2.8	97.1	2.7	0.24
5	1.5	2	1.2	60	10.8	96.7	10.4	0.92

Table S1 Effects of the amounts of benzene and H_2O_2 catalyst on the catalytic performances on $10V/mp-C_3N_4^a$.

^a Reaction conditions: T = 60 °C, $V_{\text{acetonitrile}} = 6.0$ mL, t = 3 h, and $W_{\text{catal.}} = 60$ mg.