Frequency, cm ⁻¹	Material Assignment		Ref.				
Bands resulting from C ₂ H ₅ COOH adsorption (spectra reported as blue lines)							
1550-1495	TiO ₂ _P25						
1600, 1540	ZrO_2						
1556	TiO ₂ _Merck	v _{asym} COO ⁻	26,27				
1600-1500,	CeO_2						
1635, 1576	Al ₂ O ₃						
1450-1400	TiO ₂ _P25						
1440, 1418	ZrO_2						
1450-1400	TiO ₂ _Merck	v _{sym} COO ⁻	26, 27				
1425	CeO ₂						
1450, 1418	Al_2O_3						
1473	TiO_2_P25 , ZrO_2 , TiO_2_Merck		28				
1468	CeO ₂ ,	$\delta_{asym} CH_3 + \delta_{sym} CH_2$					
1480	Al_2O_3	Al ₂ O ₃					
1380	all oxides	$\delta_{\rm sym} {\rm CH}_3$	28				
1670	TiO2_Merck, Al2O3	v C=O, undissociated C ₂ H ₅ COOH	26, 27				
Rande resulti	ng from subsequent adsorptio	n of C H COOH +CH (C)					
Danus resulti	(snectra renorted as	grev lines)	112)41 1112				
1.500			• •				
1590	11O ₂ _P25	vC=O(amide)	28				
1530	TiO ₂ _P25						
1600, 1540	ZrO_2						
1616, 1556	TiO ₂ _Merck	v _{asym} COO ⁻	26, 27				
1600-1500,	CeO_2						
1644, 1635, 1576	Al_2O_3						
1415	TiO ₂ _P25						
1440, 1418	ZrO_2						
1450-1400	TiO ₂ _Merck	v _{sym} COO ⁻	26, 27				
1425	CeO_2						
1450, 1418	Al ₂ O ₃						
1560	TiO ₂ Merck		• •				
1582	$\overline{Al_2O_3}$	δNH ₂	28				
1469	TiO ₂ _P25,						
1474	ZrO ₂ ,						
1470	TiO ₂ _Merck	$\delta_{asym}CH_3+\delta_{sym}CH_2$	28				
1368	CeO ₂ ,						
1471	Al ₂ O ₃						
1380	all oxides	δ _{sym} CH ₃	28				

Table S1. Assignment of IR bands in Figure 3

Frequency, cm ⁻¹	Material	Assignment	Ref.				
Bands resulting from HCOOH adsorption (spectra reported as blue lines)							
1580-1541 1566 1598 1586, 1550, 1628, 1600	TiO_2_P25 ZrO_2 TiO_2_Merck CeO_2 Al_2O_3	v _{asym} COO ⁻	18, 26, 27				
1412, 1361 1370-1316 1403, 1364 1371, 1361, 1307 1391, 1324	TiO_2_P25 ZrO_2 TiO_2_Merck CeO_2 Al_2O_3	ν _{sym} COO⁻	18, 26, 27				
1385 1386 1380	TiO ₂ _P25, ZrO ₂ TiO ₂ _Merck CeO ₂ , Al ₂ O ₃	δΟ-С-Н	18, 26, 27				
1673 1675	TiO ₂ _Merck Al ₂ O ₃	vC=O, undissociated HCOOH	18, 26, 27				
Bands resu	llting from subsequent	adsorption of CH ₃ (CH ₂) ₄	NH ₂				
	(spectra reported	l as grey lines)					
1665, 1634 1674, 1636 1665, 1643 1666, 1629	TiO_2_P25 ZrO_2 TiO_2_Merck CeO_2	vC=O (amide)	18, 28				
1589 1573 1598 1603, 1528	TiO ₂ _P25 ZrO ₂ , CeO ₂ TiO ₂ _Merck Al ₂ O ₃	$v_{asym}COO^-, \delta NH_2$	18, 26, 28				
1469, 1444 1466, 1447 1466, 1441 1464 1469	TiO_2_P25 $ZrO_2,$ TiO_2_Merck CeO_2 Al_2O_3	δCH ₂ , δCH ₃	28				
1361, 1370-1316 1386, 1364 1375 1383, 1300	TiO_2_P25 ZrO_2 TiO_2_Merck CeO_2 Al_2O_3	ν _{sym} COO⁻	18, 26				

 Table S2. Assignment of IR bands in Figure 4

Figure S1. IR spectra of TiO_2_P25 , ZrO_2 , TiO_2_Merck , CeO_2 , and γ - Al_2O_3 contacted with propanoic acid and 1-pentanamine, outgassed at r.t. (grey lines: a, b, c, d, e) and further heated in static atmosphere at 383K for 30 min (black lines: a', b', c', d', e').

Material	v _{asym} (COO ⁻), cm ⁻¹	Integrated Intensity, cm ⁻¹	<i>v_{sym} (COO</i> -), <i>cm</i> ⁻¹	Integrated Intensity, cm ⁻¹
TiO ₂ P25	1519	5.43	1361	10.19
	1541	8.60	1412	0.28
	1560	4.35		
	1579	11.53		
	1615	5.98		
TiO ₂ _Merck	1598	29.74	1364	3.90
	1674	12.50	1403	2.07

Table S3. Integrated intensities of $v_{asym}COO^{-}$ and $v_{sym}COO^{-}$ components of HCOOH adsorbed on TiO_2_P25 and TiO_2_Merck (see Figure 5 in the main text).

Figure S2. Dependence of integrated intensities ratio of $I(COO_{sym})/I(COO_{asym})$ from the O-C-O bond angle of adsorbed COO- species (in green and blue are ranges of angles measured for bidentate and bridging type of carboxylate complexes respectively). [Ref: G.B. Deacon, R.J. Phillips, Coord. Chem. Rev., 1980, 33, 227]