## **Supporting Information**

| Sample          | S <sub>BET</sub> m <sup>2</sup> .g <sup>-1</sup> | V <sub>t</sub> cm <sup>3</sup> .g <sup>-1</sup> | D nm* |
|-----------------|--------------------------------------------------|-------------------------------------------------|-------|
| Aerosil-380     | 360                                              | 0.85                                            | -     |
| Aerosil-380 SH  | 290                                              | 2.7                                             | -     |
| Aerosil-380a SH | 234                                              | 1.7                                             | -     |
| SBA-15          | 927                                              | 0.98                                            | 7.6   |
| SBA-15 SH       | 704                                              | 0.79                                            | 7.2   |
| P.SBA-15        | 830                                              | 0.66                                            | 6.5   |
| P.SBA-15SH      | 618                                              | 0.52                                            | 6.1   |
| m-MCF           | 699                                              | 0.96                                            | 22    |
| m-MCF SH        | 586                                              | 0.88                                            | 21    |

### Table S1-Porosity of synthesized materials by N<sub>2</sub> physisorption

\*BJH analysis from adsorption branch



Figure S1 Ar physisorption at 77K of m-MCF and P.SBA-15



Figure S2  $N_{\rm 2}$  isotherms at 77K of aerosil-380 and functionalized aerosil



Figure S3 SEM images (A) SiO<sub>2</sub>-SH (Aerosil) (B) SBA-15SH (C) P. SBA-15 SH (D) m-MCF-SH



Figure S4 X-ray diffractograms of fresh catalysts (left) spent catalysts (right)



Table S2-Conversion of the Heck reaction for bromide and chloride substrates

| Substrate     | Solvent     | Temperature | Base                           | Conversion | Time |
|---------------|-------------|-------------|--------------------------------|------------|------|
|               |             |             |                                | (%)        | (h)  |
| Bromobenzene  | DMF/Toluene | 110         | Et₃N                           | 5          | 16   |
| Bromobenzene  | DMF         | 110         | Et₃N                           | 15         | 16   |
| Bromobenzene  | DMF         | 110         | K <sub>2</sub> CO <sub>3</sub> | 84         | 3    |
| Bromobenzene  | NMP         | 110         | K <sub>2</sub> CO <sub>3</sub> | 80         | 3    |
| Chlorobenzene | DMF/Toluene | 110         | Et₃N                           | 0          | 16   |
| Chlorobenzene | DMF         | 130         | Et₃N                           | 0          | 16   |
| Chlorobenzene | DMF         | 130         | K <sub>2</sub> CO <sub>3</sub> | 0          | 5    |
| Chlorobenzene | NMP         | 130         | K <sub>2</sub> CO <sub>3</sub> | 0          | 5    |
| Chlorobenzene | DMF         | 130         | Et₃N                           | 0          | 5    |

Reaction conditions: 2.25 mmol of substrate, 3.4 mmol of butyl acrylate, 20 mg of P.SBA-15SHPd (0.1mol% of palladium), 2.14 mmol of base, 2.0mL toluene+ 0.2mL DMF or 2.0mL of DMF or NMP.

| Material               | Conversion (%) | Conversion(%) after<br>PVPy addition |
|------------------------|----------------|--------------------------------------|
| SiO <sub>2</sub> -SHPd | 85             | 2                                    |
| SBA-15SHPd             | 88             | 4                                    |
| P-SBA-15SHPd           | 88             | 3                                    |
| m-MCFSHPd              | 89             | 5                                    |

Table S3-Conversion of the Heck reaction and the conversion after PVP poisoning test

For the hot filtration test, the Heck reaction was allowed to run for 3 hours, the solid was filtered and the remained liquid was keep stirring under the same reaction condition. In the case of SBA-15SHPd, the conversion in the liquid phase increased from 48% to 71% after 10 hours, showing the contribution of soluble species on catalysis.



# Figure S5 Plot product yield versus time for the Heck reaction between iodobenzene and butylacrylate for different materials\*

\* The experiments were run at a lower palladium concentration (0.01mol% of Pd related to iodobenzene).



### Figure S6 $N_2$ isotherms of fresh and spent OMS materials after the Heck reaction



### Table S4 Conversion of the Suzuki reaction for bromide and chloride substrates

| Substrate       | Solvent | Temperature | Base              | Conversion | Time |
|-----------------|---------|-------------|-------------------|------------|------|
|                 |         | -           |                   | (%)        | (h)  |
| 4-bromoanisole  | ethanol | 70          | $Na_2PO_4.12H_2O$ | 8          | 3    |
| 4-bromoanisole  | DMF     | 130         | $Na_2PO_4.12H_2O$ | 80         | 2    |
| 4-bromoanisole  | NMP     | 130         | $Na_2PO_4.12H_2O$ | 80         | 2    |
| 4-chloroanisole | ethanol | 70          | $Na_2PO_4.12H_2O$ | 0          | 3    |
| 4-chloroanisole | DMF     | 130         | $Na_2PO_4.12H_2O$ | 10         | 4    |
| 4-chloroanisole | NMP     | 130         | $Na_2PO_4.12H_2O$ | 12         | 4    |

Reaction conditions: substrate (2.4 mmol), phenylboronic acid (2.88 mmol), base (2.4 mmol), 20 mg of P.SBA-15SHPd (0.12 mol % of Pd) and 4 mL of solvent



Figure S7 TEM images: Spent SBA-15SHPd (left) Spent P.SBA-15 (right) scale bars 100 nm



Figure S8  $N_2$  isotherms of fresh and spent OMS materials after the Suzuki reaction