Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Asymmetric 1,3-Dipolar Cycloaddition Reactions between Enals and Nitrones Catalysed by Half-Sandwich Rhodium or Iridium Diphosphane Complexes

Ainara Asenjo, Fernando Viguri*, M. Pilar Lamata, Ricardo Rodríguez, María Carmona Luis A. Oro and Daniel Carmona*

Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Catálisis y Procesos Catalíticos, Pedro Cerbuna 12, 50009 Zaragoza, Spain

Table of Contents	page
1. General Remarks	2
2. Starting Materials	2
3. Analytical Data for the 1,3-Dipolar Cycloaddition Products	2
4. References	10
5. ¹ H and ¹³ C NMR Spectra and Chromatograms of the Adducts	11

1. General Remarks

All solvents were dried over appropriate drying agents, distilled under argon and degassed prior to use. All preparations have been carried out under argon. ¹H and ¹³C NMR spectra were recorded on a Bruker AV-300 spectrometer (300.13 MHz), Bruker AV-400 (400.16 MHz) or a Bruker AV-500 (500.13 MHz). Chemical shifts are expressed in ppm upfield from SiMe₄. Analytical HPLC was performed on an Alliance Waters (Waters 2996 PDA detector) instrument using a chiral column Daicel Chiralcel OD-H (0.46 cm × 25 cm) or Chiralpak AD-H (0.46 cm × 25 cm).

2. Starting Materials

The stereochemical purity of the enals was tested by NMR, after distillation under argon: methacrolein 95.5%, acrolein 99.9%, *trans*-crotonaldehyde 97.6% and *trans*-2-methyl-2-butenal 99.2%. The nitrones **Ia-e**, ¹ **II**², **III**³, **IV**³, **V**³, and the complexes $[(\eta^5 - C_5Me_5)M(PP^*)(H_2O)][SbF_6]_2$ (1-10) were prepared according to literature procedures.⁴

3. Analytical Data for 1,3-Dipolar Cycloaddition Products (3R,4R)-endo-4-methyl-2-N,3-diphenylisoxazolidine-4-carbaldehyde^{5a,6a} (Table 1, Entries 1-10)

¹H RMN (400.16 MHz, CDCl₃, 25 °C): δ = 9.20 (s, 1H, CHO), 7.5-6.8 (m, 10H, H_{Ar}), 4.90 (s, 1H, H₃), 3,97 (d, J = 8.9 Hz, 1H, H₅), 3.56 (d, J = 8.9 Hz, 1H, H₅), 0.92 ppm (s, 3H, Me). ¹³C RMN (100.62 MHz CDCl₃, 25 °C): δ = 200.37 (CHO), 150-114 (12C, C^{Ar}), 73.19 (C⁵), 72.48 (C³), 63.11 (C⁴), 15.49 ppm (Me). Enantiomeric excess was determined by ¹H NMR after the *in situ* formation of diastereomeric imines with (R)-(+)- α -methylbenzylamine (99%, Fluka). ¹H NMR (400.16 MHz, C₆D₆, RT): major isomer δ = 5.07 (s, O-N-C³H), minor isomer δ = 5.03 ppm (s, O-N-C³H).

(3,5)-endo-4-methyl-2-N,3-diphenylisoxazolidine-4-carbaldehyde^{5a,6a} (Table 1, Entries 1-10)

(3R*,5R*)-endo

¹H RMN (400.16 MHz, CDCl₃, 25 °C): δ = 9.58 (d, J = 1.0 Hz, 1H, CHO), 7.5-6.8 (m, 10H, H_{Ar}), 4.61 (pt, J = 7.6 Hz, 1H, H₃), 3.04 (dd, J = 12.7, 7.6 Hz, 1H, H₄), 1.94 (dd, J = 12.7, 7.6 Hz, 1H, H₄), 1.16 ppm (s, 3H, Me). ¹³C RMN (100.62 MHz CDCl₃, 25 °C): δ = 201.37 (CHO), 150-114 (12C, C^{Ar}), 87.20 (C⁵), 68.63 (C³), 44.25 (C⁴), 18.82 ppm (Me). Enantiomeric excess was determined by ¹H NMR after the *in situ* formation of diastereomeric imines with (R)-(+)-α-methylbenzylamine (99%, Fluka). ¹H NMR (400.16 MHz, C₆D₆, RT): major isomer δ = 4.84 (pt, O-N-C³H), minor isomer δ = 5.16 ppm (pt, O-N-C³H).

(3S,5R)-endo-2-methyl-1,5,6,10b-tetrahydro-2H-isoxazolo[3,2a]isoquinoline-2-carbaldehyde^{5a} (Table 1, Entries 11-20)

The oily residue was purified by column chromatography over silica gel with hexane/AcOEt (7/3, v/v) to provide the title compound as an oil. 1 H NMR (400.16 MHz, CD₂Cl₂, 25 °C): δ = 9.51 (s, 1H, CHO), 7.1-6.9 (m, 4H, H_{Ar}), 4.62 (m, 1H, H₃), 3.21-2.84 (m, 2H, H₆), 2.94-2.74 (m, 2H, H₇), 2.48 (pt, J = 11.3 Hz, 1H, H₄), 2.35 (dd, J = 11.3, 7.0 Hz, 1H, H₄), 1.32 ppm (s, 3H, Me). 13 C NMR (100.62 MHz C₆D₆, 25 °C): δ = 200.78 (CHO), 134.8-126.73 (6C, C^{Ar}), 87.85 (C⁵), 63.77 (C³), 50.02 (C⁶), 43.82 (C⁴), 29.0.2 (C⁷), 21.30 ppm (Me). Enantiomeric excess of the adduct was checked by 1 H NMR with the use of the chiral shift reagent Eu(hfc)₃. 1 H NMR (400.16 MHz, C₆D₆, 25 °C): major isomer δ = 14.87 (s, CHO), minor isomer δ = 14.63 ppm (s, CHO).

(3,5)-endo-5-methyl-2-N-methyl-3-phenylisoxazolidin-5-carbaldehyde 5d,6a (Table 2, Entries 1-4)

The oily residue was purified by column chromatography over silica gel with hexane/AcOEt (7/3, v/v) to provide the title compound as an oil. 1 H NMR (400.16 MHz, CD₂Cl₂, 25 $^{\circ}$ C): δ = 9.55 (s, 1H, CHO), 7.3-7.1 (m, 5H, H_{Ar}), 3.58 (m, 1H, H₃), 2.84 (dd, J = 12.6, 7.1 Hz, 1H, H₄), 2.48 (s, 3H, NMe), 2.14 (dd, J = 12.6, 9.1 Hz, 1H, H₄), 1.34 ppm (s, 3H, Me). 13 C NMR (100.62 MHz CD₂Cl₂, 25 $^{\circ}$ C): δ = 201.14 (CHO), 128 (6C, C^{Ar}), 85.11 (C⁵), 73.58 (C³), 48.00 (C⁴), 43.73 (NMe), 21.19 ppm (Me). Enantiomeric excess was determined by 1 H NMR after the *in situ* formation of diastereomeric imines with (R)-(+)- α -methylbenzylamine (99%, Fluka). 1 H NMR (400.16 MHz, C₆D₆, RT): major isomer δ = 3.07 (t, O-N-C³H), minor isomer δ = 3.23 ppm (t, O-N-C³H).

(3R,5R)-endo-hexahydropyrrolo[1,2b]isoxazolo-2-carbaldehyde^{5a} (Table 2, Entries 5-8)

The oily residue was purified by column chromatography over silica gel with hexane/AcOEt (7/3, v/v) to provide the title compound as an oil. 1 H NMR (400.16 MHz, CD₂Cl₂, 25 $^{\circ}$ C): δ = 9.55 (s, 1H, CHO), 3.77 (m, 1H, H₃), 3.15-3.05 (m, 2H, H₆), 2.28 (d, J = 6.3 Hz, 2H, H₄), 1.97 (m, 2H, H₇, H₈), 1.72 (m, 1H, H₇), 1.59 (m, 1H, H₈) 1.34 ppm (s, 3H, Me). 13 C NMR (100.62 MHz CD₂Cl₂, 25 $^{\circ}$ C): δ = 200.55 (CHO), 86.69 (C⁵), 65.98 (C³), 56.64 (C⁶), 44.17 (C⁴), 29.92 (C⁷), 23.26 (C⁸), 20.65 ppm (Me). Enantiomeric excess of adduct was checked by 1 H NMR with the use of the chiral shift reagent Eu(hfc)₃ (99%, Aldrich). 1 H NMR (400.16 MHz, C₆D₆, 25 $^{\circ}$ C): major isomer δ = 11.30 (s, CHO), minor isomer δ = 12.32 ppm (s, CHO).

(3R,5R)-endo-hexahydroisoxazolo[2,3a]pyridine-2-carbaldehyde^{5a} (Table 2, Entries 9-12)

The oily residue was purified by column chromatography over silica gel with Et₂O/n-Pentane/MeOH (30/65/5, v/v/v) to provide the title compound as an oil. 1 H NMR (400.16 MHz, C₆D₆, 25 $^{\circ}$ C): δ = 9.73 (s, 1H, CHO), 3.37 (m, 1H, H₆), 2.32 (m, 1H, H₆), 2.02 (pt, J = 11.4 Hz, 1H, H₄), 1.91 (m, 1H, H₃), 1.58 (dd, J = 11.4, 7.9 Hz, 1H, H₄), 1.44-1.04 (m, 2H, H₉), 1.34 (m, 2H, H₇), 1.30-0.85 (m, 2H, H₈), 1.11 ppm (s, 3H, Me). 13 C NMR (100.62 MHz C₆D₆, 25 $^{\circ}$ C): δ = 204.18 (CHO), 83.12 (C⁵), 66.66 (C³), 55.17 (C⁶), 42.94 (C⁴), 29.37 (C⁹), 24.75 (C⁷), 23.97 (C⁸), 19.57 ppm (Me). Enantiomeric excess was determined by 1 H NMR after the *in situ* formation of diastereomeric salts with (*S*)-(+)-mandelic acid (99%, Aldrich). 1 H NMR (400.16 MHz, CDCl₃, 25 $^{\circ}$ C): major isomer δ = 9.60 (s, CHO), minor isomer δ = 9.56 ppm (s, CHO).

Endo-4-methyl-2-N-phenyl-3-(4-methoxyphenyl)-isoxazolidine-4-carbaldehyde^{5b,c} (Table 2, Entry 13)

¹H NMR (400.16 MHz, CDCl₃, 25 °C): δ = 9.66 (s, 1H, CHO), 7.4-6.8 (9H, H_{Ar}), 4.88 (s, 1H, H₃), 4.43 (d, J = 8.9 Hz, 1H, H₅), 3.98 (d, 1H, H₅), 3.82 (s, 3H, OMe), 0.91 ppm (s, 3H, Me). ¹³C NMR (100.62 MHz, CDCl₃, 25 °C): δ = 200.63 (s, CHO), 159-114 (12C, C^{Ar}), 73.11 (s, C⁵), 72.05 (s, C³), 63.02 (s, C⁴), 55.26 (s, OMe), 15.45 ppm (s, Me). Enantiomeric excess was determined by ¹H NMR after the *in situ* formation of diastereomeric imines with (R)-(+)- α -methylbenzylamine (99%, Fluka). ¹H NMR (400.16 MHz, C₆D₆, RT): major isomer δ = 4.93 (s, O-N-C³H), minor isomer δ = 4.88 ppm (s, O-N-C³H).

Endo-4-methyl-2-*N*-phenyl-3-(4-methylphenyl)-isoxazolidine-4-carbaldehyde^{5b,c} (Table 2, Entry 14)

¹H NMR (400.16 MHz, CDCl₃, 25 °C): δ = 9.69 (s, 1H, CHO), 7.4-6.9 (9H, H_{Ar}), 4.95 (s, 1H, H₃), 4.45 (d, J = 8.9 Hz, 1H, H₅), 4.01 (d, 1H, H₅), 2.43 (s, 3H, Me-Ar), 0.95 ppm (s, 3H, Me). ¹³C NMR (100.62 MHz, CDCl₃, 25 °C): δ = 200.56 (s, CHO), 150-115 (12C, C^{Ar}), 73.15 (s, C⁵), 72.35 (s, C³), 63.05 (s, C⁴), 21.25 (s, Me-Ar), 15.47 ppm (s, Me). Enantiomeric excess was determined by ¹H NMR after the *in situ* formation of diastereomeric imines with (R)-(+)- α -methylbenzylamine (99%, Fluka). ¹H NMR (400.16 MHz, C₆D₆, RT): major isomer δ = 5.00 (s, O-N-C³H), minor isomer δ = 4.98 ppm (s, O-N-C³H).

*Endo-*4-methyl-2-*N*-phenyl-3-(4-trifluoromethyl-phenyl)-isoxazolidine-4-carbaldehyde^{5a,c} (Table 2, Entry 16)

¹H NMR (400.16 MHz, CDCl₃, 25 °C): δ = 9.70 (s, 1H, CHO), 7.7-6.9 (9H, H_{Ar}), 5.08 (s, 1H, H₃), 4.45 (d, J = 8.9 Hz, 1H, H₅), 4.02 (d, 1H, H₅), 0.92 ppm (s, 3H, Me). ¹³C NMR (100.62 MHz, CDCl₃, 25 °C): δ = 199.82 (s, CHO), 150-114 (12C, C^{Ar}), 124.18 (q, J_{F-C} = 272.0 Hz, CF₃), 73.18 (s, C⁵), 71.78 (s, C³), 63.24 (s, C⁴), 15.53 ppm (s, Me). ¹⁹F NMR (282.2 MHz, CDCl₃, 25 °C): δ = -62.28 ppm (s, CF₃). Enantiomeric excess was determined by ¹H NMR after the *in situ* formation of diastereomeric imines with (*R*)-(+)-α-methylbenzylamine (99%, Fluka). ¹H NMR (400.16 MHz, C₆D₆, RT): major isomer δ = 5.09 (s, O-N-C³H), minor isomer δ = 4.98 ppm (s, O-N-C³H).

Endo-5-methyl-2-*N*-phenyl-3-(4-trifluoromethyl-phenyl)-isoxazolidine-5-carbaldehyde^{5a,c} (Table 2, Entry 16)

¹H NMR (400.16 MHz, CDCl₃, 25 °C): δ = 9.65 (s, 1H, CHO), 7.7-6.9 (9H, H_{Ar}), 4.94 (pt, J = 7.5 Hz, 1H, H₃), 3.37 (dd, J = 8.2, 12.6 Hz, 1H, H₄), 2.27 (dd, J = 6.8 Hz, 1H, H₄), 1.52 ppm (s, 3H, Me). ¹³C NMR (100.62 MHz, CDCl₃, 25 °C): δ = 200.75 (s, CHO), 150-114 (12C, C^{Ar}), 124.22 (q, J_{F-C} = 272.0 Hz, CF₃), 87.40 (s, C⁵), 67.93 (s, C³), 45.59 (s, C⁴), 18.56 ppm (s, Me). ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -62.32 ppm (s, CF₃). Enantiomeric excess was determined by ¹H NMR after the *in situ* formation of diastereomeric imines with (R)-(+)- α -methylbenzylamine (99%, Fluka). ¹H NMR (400.16 MHz, C₆D₆, RT): major isomer δ = 4.71 (pt, O-N-C³H), minor isomer δ = 5.03 ppm (pt, O-N-C³H).

Endo-4-methyl-2-N-phenyl-3-(4-nitro-phenyl)-isoxazolidine-4-carbaldehyde^{5a} (Table 2, Entry 17)

Ph
$$0$$
 5 3 4 Me 0 CHO 0 2 N 0 3 $R^*,4$ R^* $)$ - endo

¹H NMR (400.16 MHz, CDCl₃, 25 °C): δ = 9.69 (s, 1H, CHO), 8.4-6.8 (9H, H_{Ar}), 5.07 (s, 1H, H₃), 4.46 (d, J = 8.9 Hz, 1H, H₅), 4.03 (d, 1H, H₅), 0.92 ppm (s, 3H, Me). ¹³C NMR (100.62 MHz, CDCl₃, 25 °C): δ = 199.39 (s, CHO), 149-114 (12C, C^{Ar}), 73.34 (s, C⁵), 71.42 (s, C³), 63.39 (s, C⁴), 15.82 ppm (s, Me). Enantiomeric excess was determined by ¹H NMR after the *in situ* formation of diastereomeric imines with (*R*)-(+)-α-methylbenzylamine (99%, Fluka). ¹H NMR (400.16 MHz, C₆D₆, RT): major isomer δ = 5.12 (s, O-N-C³H), minor isomer δ = 4.97 ppm (s, O-N-C³H).

*Endo-*5-methyl-2-*N*-phenyl-3-(4-nitro-phenyl)-isoxazolidine-5-carbaldehyde^{5a} (Table 2, Entry 17)

Ph
$$0$$
 CHO $\frac{5}{3}$ $\frac{4}{4}$ $\frac{1}{1}$ $\frac{1$

¹H NMR (400.16 MHz, CDCl₃, 25 °C): δ = 9.66 (d, J= 0.9 Hz, 1H, CHO), 8.4-6.8 (9H, H_{Ar}), 4.94 (pt, J= 6.7 Hz, 1H, H₃), 3.39 (dd, J= 8.3, 12.6 Hz, 1H, H₄), 2.24 (dd, J= 6.6 Hz, 1H, H₄), 1.51 ppm (s, 3H, Me). ¹³C NMR (100.62 MHz, CDCl₃, 25 °C): δ = 200.76 (s, CHO), 149-114 (12C, C^{Ar}), 87.32 (s, C⁵), 67.47 (s, C³), 45.45 (s, C⁴), 18.61 ppm (s, Me). Enantiomeric excess was determined by ¹H NMR after the *in situ* formation of diastereomeric imines with (R)-(+)-α-methylbenzylamine (99%, Fluka). ¹H NMR (400.16 MHz, C₆D₆, RT): major isomer δ = 4.68 (pt, O-N-C³H), minor isomer δ = 5.01 ppm (pt, O-N-C³H).

(3,4)-endo-2,3-diphenylisoxazolidine-4-carbaldehyde^{6b} (Table 3, Entries 1-4)

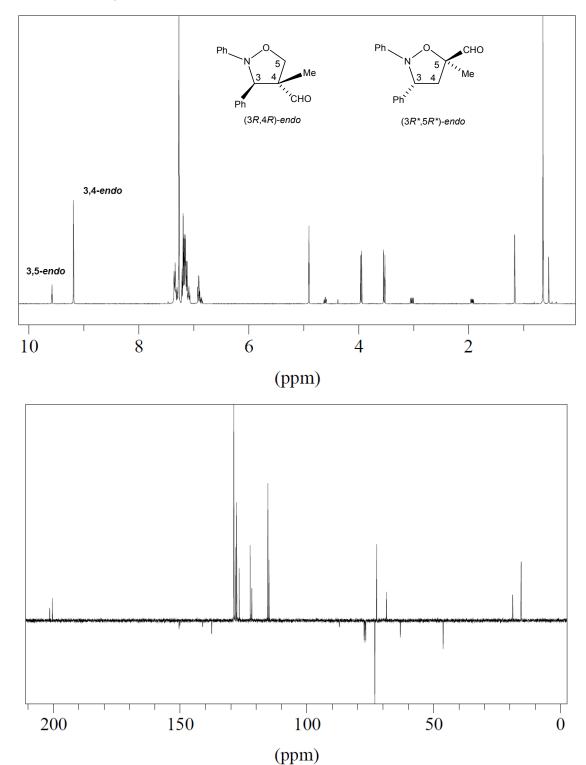
The oily residue was purified by column chromatography over silica gel with hexane/AcOEt (7/3, v/v) to provide the title compound as an oil. 1 H NMR (400.16 MHz, CD₂Cl₂, 25 $^{\circ}$ C): δ = 9.70 (d, J = 1.5 Hz, 1H, CHO), 7.5-6.8 (m, 10H, H_{Ar}), 4.99 (d, J = 4.6 Hz, 1H, H₃), 4.42 (m, 2H, H₅), 3.53 ppm (m, 1H, H₄). 13 C NMR (75.47 MHz, CDCl₃, 25 $^{\circ}$ C): δ = 197.98 (CHO), 150-115 (12C, C^{Ar}), 70.04 (C³), 66.33 (C⁴), 65.59 ppm (C⁵). Enantiomeric excess was determined by HPLC analysis of the primary alcohol obtained by NaBH₄ reduction of the aldehyde, using a Chiracel OD-H column (n-hexane/2-propanol: 95/5, 0.5 mL/min); major isomer: t_r = 18.2 min. and minor isomer: t_r = 28.4 min.

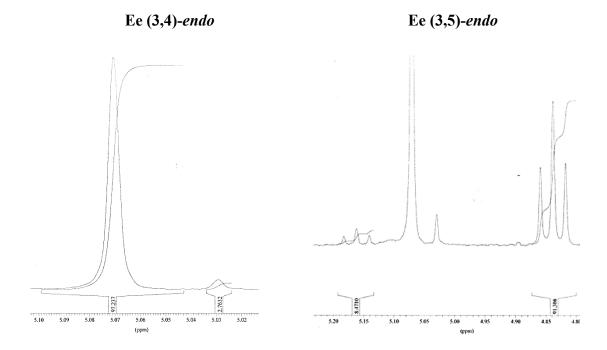
(3S,4R,5S)-endo-5-methyl-2,3-diphenylisoxazolidine-4-carbaldehyde^{6b} (Table 3, Entries 5-8)

The oily residue was purified by column chromatography over silica gel with hexane/AcOEt (7/3, v/v) to provide the title compound as an oil. 1 H NMR (400.16 MHz, CD₂Cl₂, 25 $^{\circ}$ C): δ = 9.63 (d, J = 2.5 Hz, 1H, CHO), 7.4-6.8 (m, 10H, H_{Ar}), 5.01 (d, J = 6.3 Hz, 1H, H₃), 4.43 (dq, J = 8.6, 6.1 Hz, 1H, H₅), 3.15 (m, 1H, H₄), 1.45 ppm (s, 3H, Me). 13 C NMR (100.62 MHz, CDCl₃, 25 $^{\circ}$ C): δ = 197.67 (CHO), 151.2-114.1 (12C, C^{Ar}), 75.37 (C⁵), 72.90 (C⁴), 71.41 (C³), 17.84 ppm (Me). Enantiomeric excess was determined by HPLC analysis of the primary alcohol obtained by NaBH₄ reduction of the aldehyde, using a Chiracel OD-H column (n-hexane/2-propanol: 95/5, 1 mL/min); major isomer: t_r = 13.7 min. and minor isomer: t_r = 20.9 min.

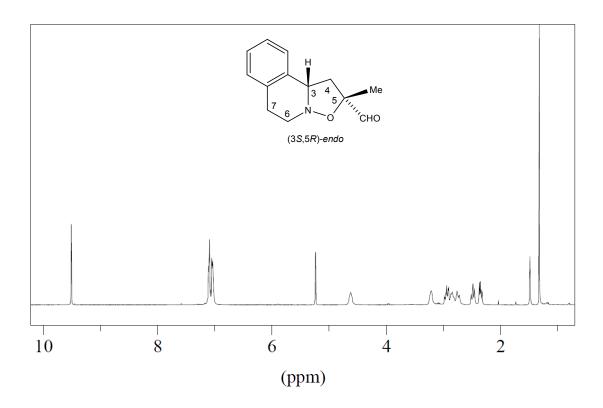
(3,4)-endo-5-methyl-2,3-diphenylisoxazolidine-4-methyl-4-carbaldehyde^{6b} (Table 3, Entries 9, 10)

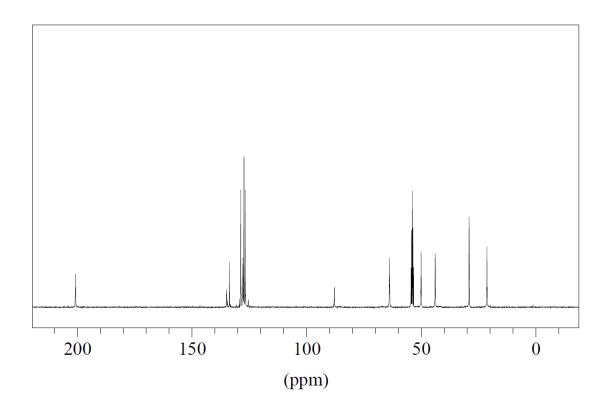
Ph
$$O$$
 $Me_{(B)}$ $Me_{(B)}$ $Me_{(A)}$ $Me_{(A)}$ $Me_{(A)}$ $Me_{(A)}$ $Me_{(A)}$ $Me_{(A)}$ $Me_{(A)}$ $Me_{(A)}$

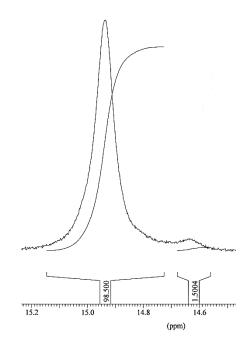

The oily residue was purified by column chromatography over silica gel with hexane/AcOEt (7/3, v/v) to provide the title compound as an oil. 1 H NMR (400.16 MHz, CD₂Cl₂, 25 °C): δ = 9.57 (s, 1H, CHO), 7.4-6.8 (m, 10H, H_{Ar}), 5.01 (s, 1H, H₃), 4.42 (q, J = 6.3 Hz, 1H, H₅), 1.23 (s, 3H, Me_(B)), 0.80 ppm (s, 3H, Me_(A)). 13 C NMR (100.62 MHz, CDCl₃, 25 °C): δ = 200.45 (CHO), 152-113 (12C, C^{Ar}), 77.75 (C³), 75.53 (C⁵), 65.76 (C⁴), 12.79 (Me_(A)), 11.06 ppm (Me_(B)). Enantiomeric excess was determined by HPLC analysis of the primary alcohol obtained by NaBH₄ reduction of the aldehyde, using a Chiracel OD-H column (n-hexane/2-propanol: 95/5, 0.75 mL/min); major isomer: t_r = 13.8 min. and minor isomer: t_r = 29.5 min.


4. References

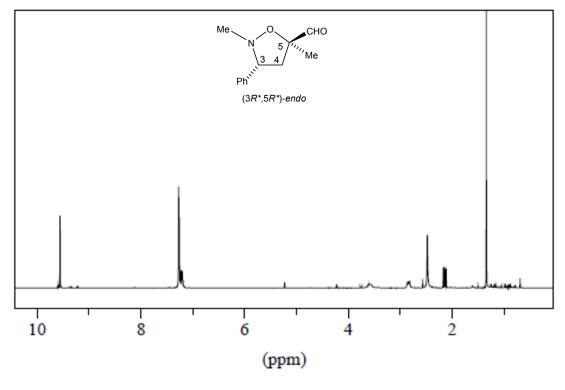
- 1. L. Tian, G.-Y. Xu, Y. Ye and L. Liu, Synth. 2003, 1329-1334.
- K. S. Chan, M. L. Yeung, W. Chan, R. Wang and T. C. W. Mak, J. Org Chem. 1995, 60, 1741-1747.
- **3**. S.-I. Murahashi, H. Mitsui, T. Shiota, T. Tsuda and S. Watanabe, *J. Org Chem.* 1990, **55**, 1736-1744.
- **4.** D. Carmona, F. Viguri, A. Asenjo, M. P. Lamata, F. J. Lahoz, P. García-Orduña and L. A. Oro, *Organometallics* 2011, **30**, 6661-6673.
- (a) F. Viton, G. Bernardinelli and E. P. Kündig, *J. Am. Chem. Soc.* 2002, 124, 4968-4969; (b) A. Bädoiu, G. Bernardinelli, J. Mareda, E. P. Kündig and F. Viton, *Chem. Asian J.* 2008, 3, 1298; (c) X. Wang, C. Weigl and M. P. Doyle, *J. Am. Chem. Soc.* 2011, 133, 9572; (d) A. Badoiu, G. Bernardinelli and E. P. Kündig, *Synthesis* 2010, 2207-2212.
- 6. (a) D. Carmona, M. P. Lamata, F. Viguri, R. Rodríguez, L. A. Oro, F. J. Lahoz, A. I. Balana, T. Tejero and P. Merino, *J. Am. Chem. Soc.* 2005, 127, 13386-13398; (b)
 D. Carmona, M. P. Lamata, F. Viguri, R. Rodríguez, T. Fischer, F. J. Lahoz, I. T. Dobrinovitch and L. A. Oro, *Adv. Synth. Catal.* 2007, 349, 1751-1758.

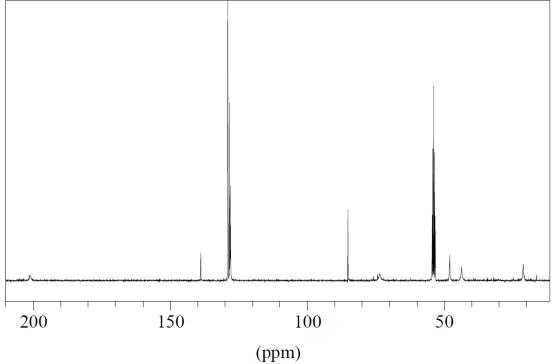

5. ¹H and ¹³C NMR Spectra and Chromatograms of the Adducts


Mixture of (3,4)-*endo*-4-methyl-2-*N*,3-diphenylisoxazolidine-4-carbaldehyde/(3,5)-*endo*-4-methyl-2-*N*,3-diphenylisoxazolidine-5-carbaldehyde: 1/5 molar ratio (Table 1, Entries 1-10)

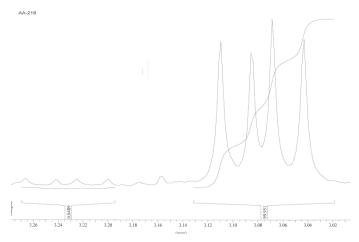


(3,5)-*endo*-2-methyl-1,5,6,10*b*-tetrahydro-2*H*-isoxazolo[3,2*a*]isoquinoline-2-carbaldehyde (Table 1, Entries 11-20)

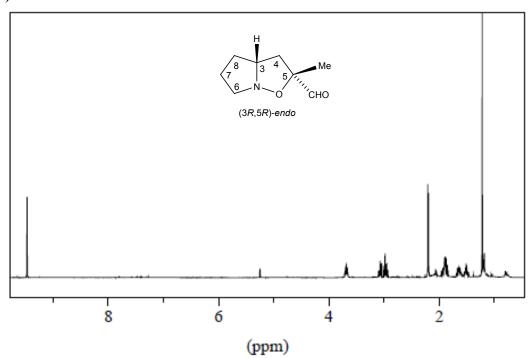


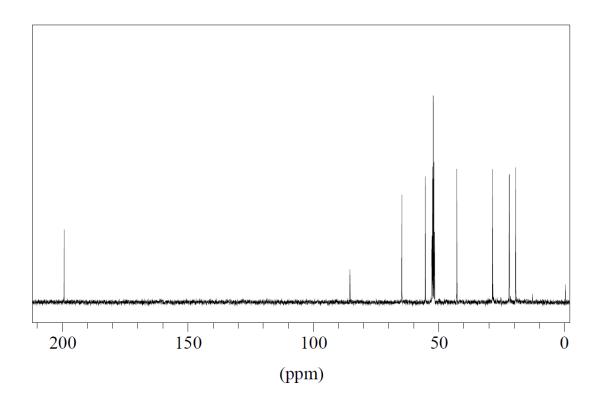


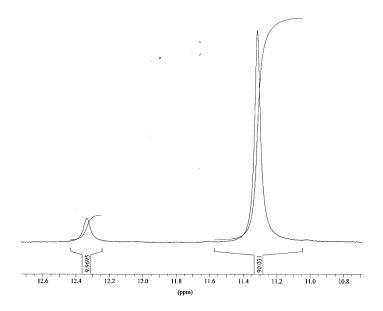
Ee (3,5)-*endo*



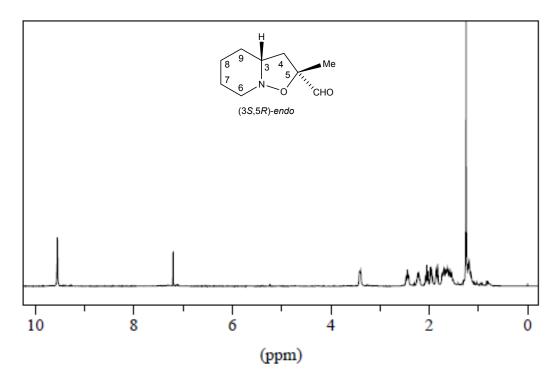
(3,5)-endo-5-methyl-2-N-methyl-3-phenylisoxazolidine-5-carbaldehyde (Table 2, Entries 1-4)

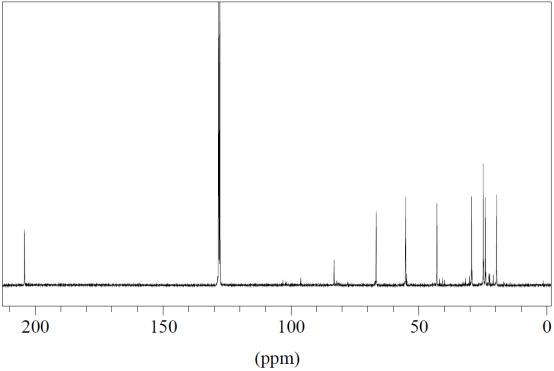




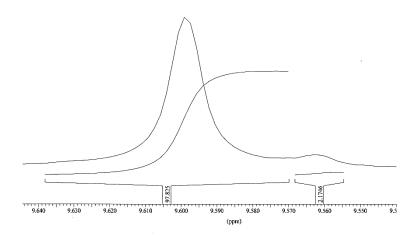


(3R,5R)-endo-hexahydropyrrolo[1,2b]isoxazolo-2-carbaldehyde (Table 2, Entries 5-8)

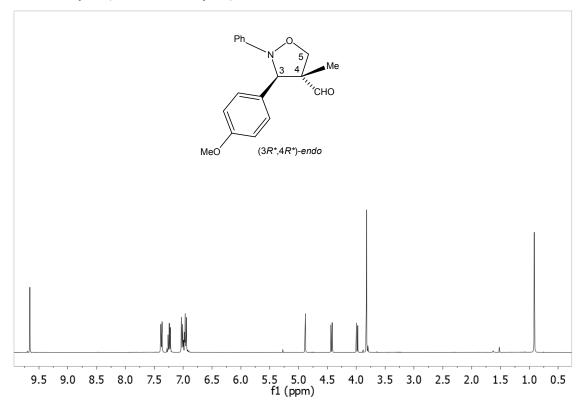


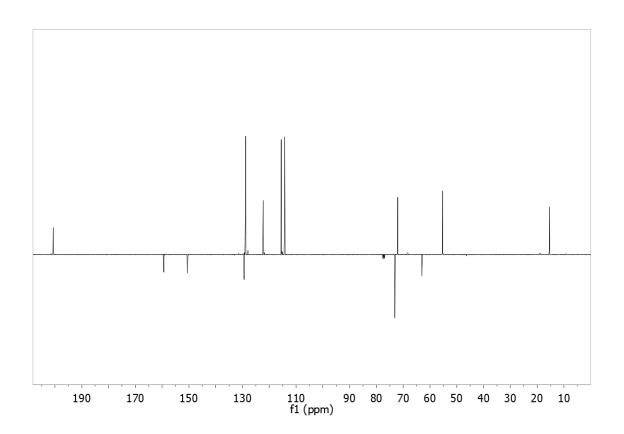


Ee (3,5)-*endo*

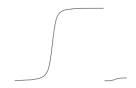


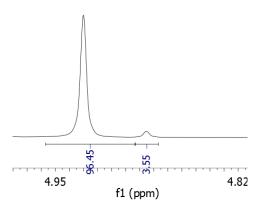
(3R,5R)-endo-hexahydroisoxazolo[2,3a]pyridine-2-carbaldehyde (Table 2, Entries 9-12)

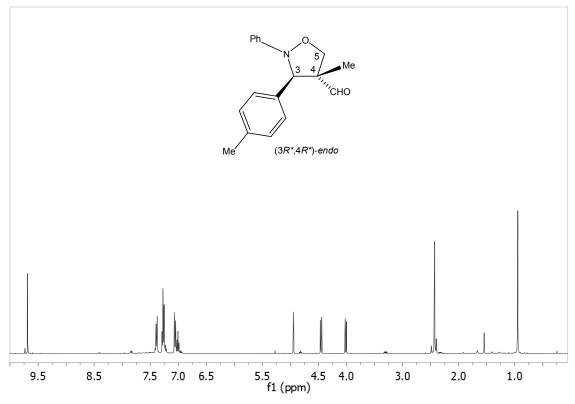


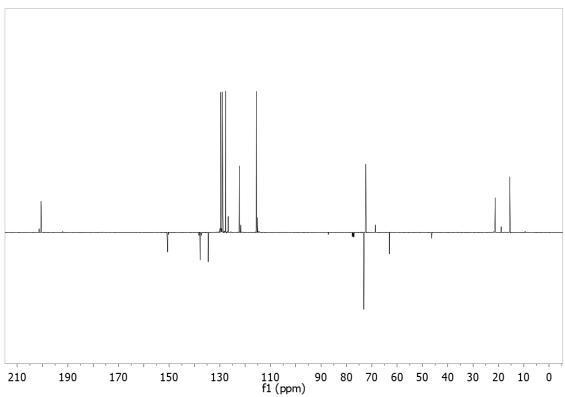


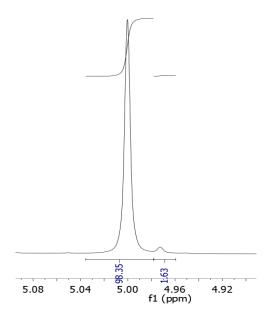
Ee (3,5)-*endo*



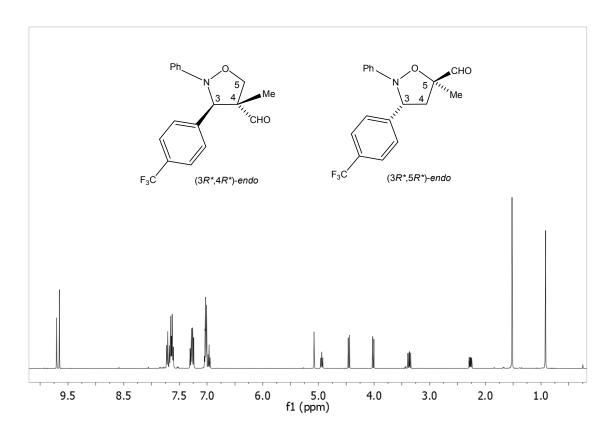

(3,4)-endo-4-methyl-2-N-phenyl-3-(4-methoxyphenyl)-isoxazolidine-4-carbaldehyde (Table 2, Entry 13)

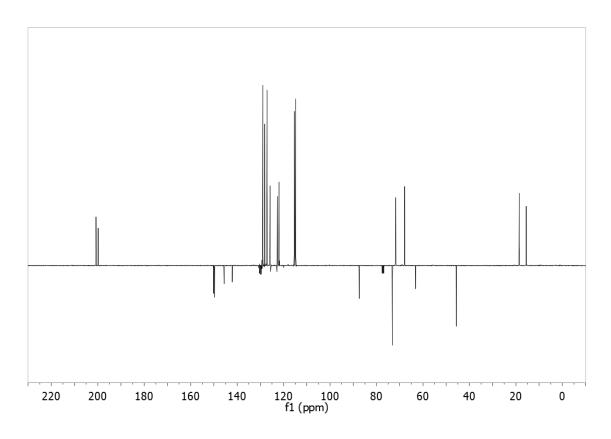


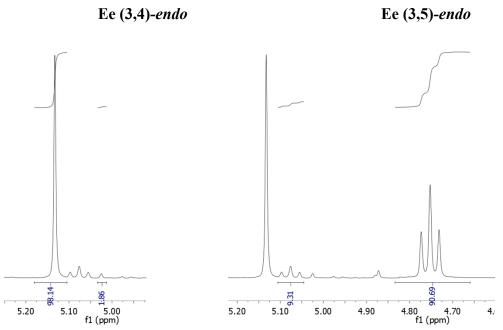

Ee (3,4)-*endo*

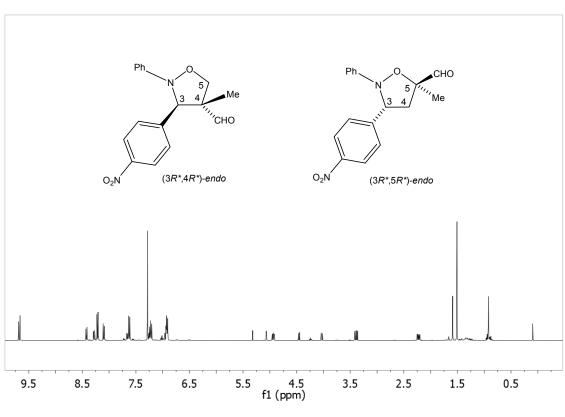


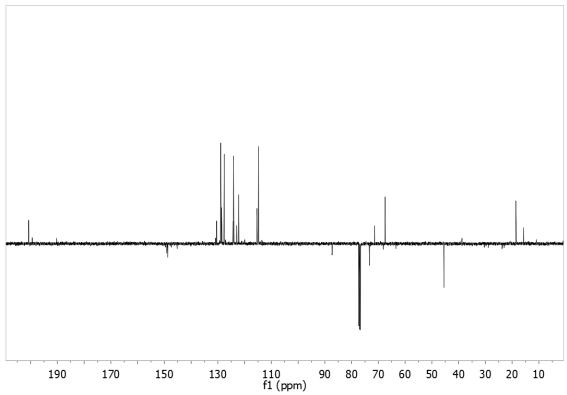
$(3,\!4)-endo-4-methyl-2-N-phenyl-3-(4-methylphenyl)-isoxazolidine-4-carbaldehyde (Table 2, Entry 14)$

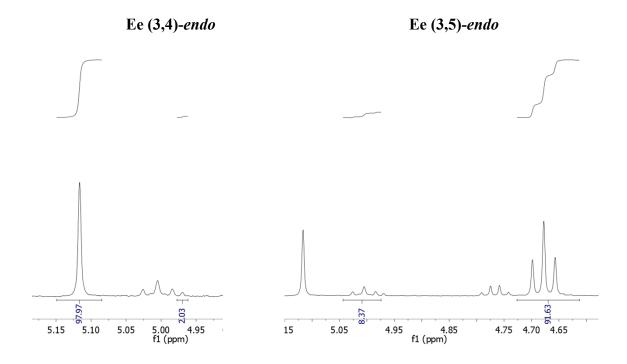


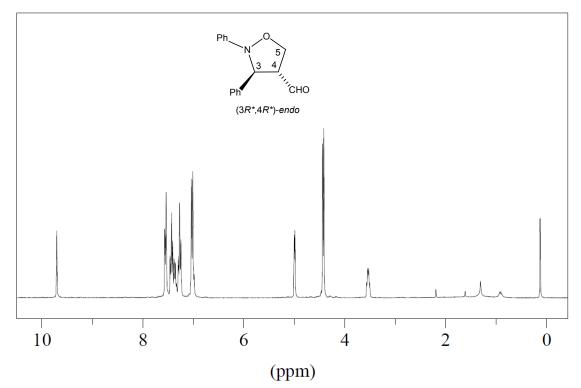


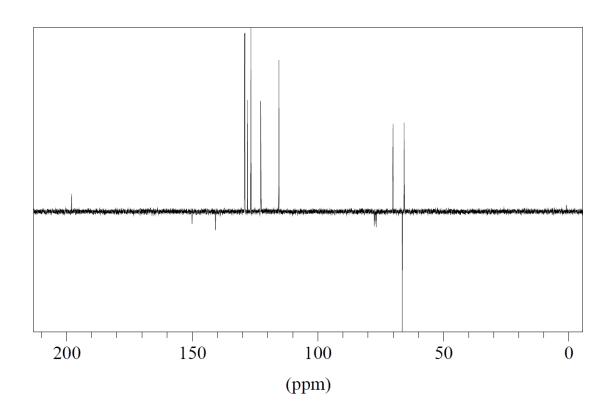


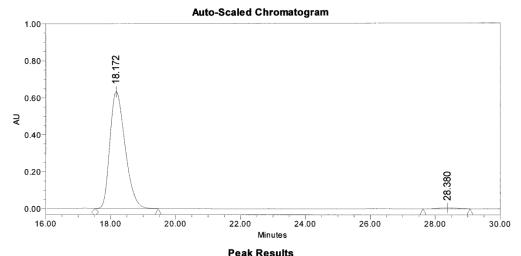

Mixture of (3,4)-endo-4-methyl-2-N-phenyl-3-(4-trifluoromethylphenyl)-isoxazolidine-4-carbaldehyde and (3,5)-endo-5-methyl-2-N-phenyl-3-(4-trifluoromethyl-phenyl)-isoxazolidine-5-carbaldehyde (Table 2, Entry 16): 46/54 molar ratio



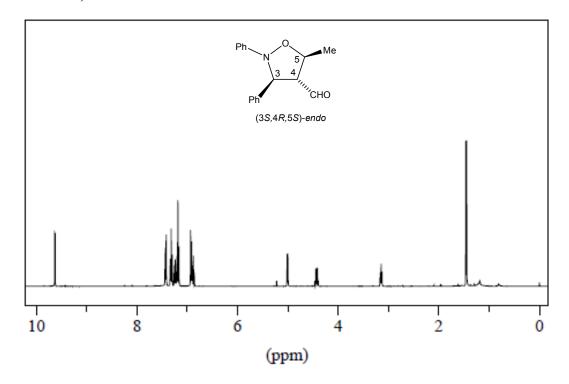


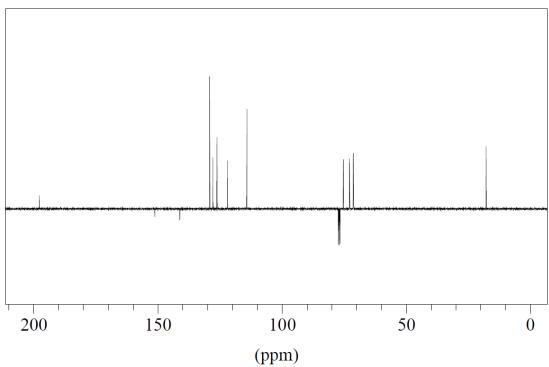

Mixture of (3,4)-endo-4-methyl-2-N-phenyl-3-(4-nitro-phenyl)-isoxazolidine-4-carbaldehyde and (3,5)-endo-5-methyl-2-N-phenyl-3-(4-nitro-phenyl)-isoxazolidine-5-carbaldehyde (Table 2, Entry 17): 30/70 molar ratio

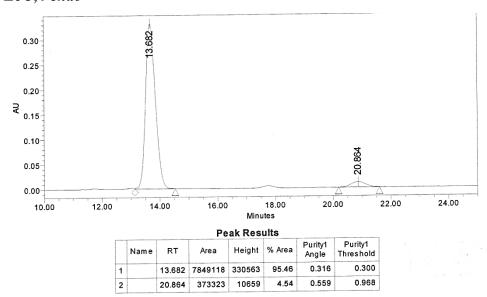




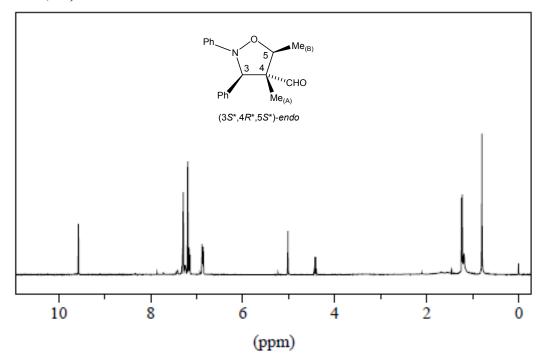
(3,4)-endo-2,3-diphenylisoxazolidine-4-carbaldehyde (Table 3, Entries 1-4)

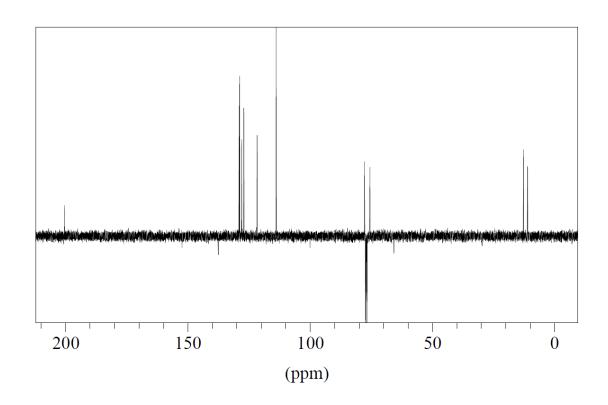



Ee 3,4-endo

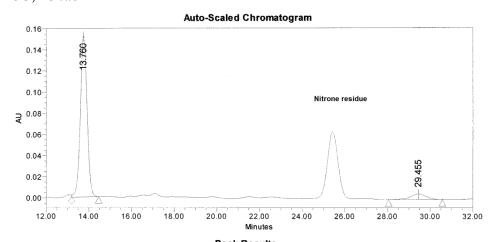

reak Results									
	Name	RT	Area	Height	% Area	Purity1 Angle	Purity1 Threshold		
1		18.172	20482085	633071	99.08	2.106	4.679		
2		28.380	189818	4677	0.92	3.424	10.237		

(3R,4R,5S)-endo-5-methyl-2,3-diphenylisoxazolidine-4-carbaldehyde (Table 3, Entries 5-8)





Ee 3,4-endo



(3,4)-endo-5-methyl-2,3-diphenylisoxazolidine-4-methyl-4-carbaldehyde (Table 3, Entries 9, 10)

Ee 3,4-endo

Peak Results										
	Name	RT	Area	Height	% Area	Purity1 Angle	Purity1 Threshold			
1		13.760	3339167	151860	92.82	5.194	22.466			
2		29.455	258238	5224	7.18	60.078	90.000			