Palladium Catalyzed Oxidative Carbonylation of Alcohols: Effects of the Diphosphine Ligands

Emanuele Amadio, a,b* Zoraida Freixa,b,c Piet W.N.M. van Leeuwen,b Luigi Toniolo a*

SUPPORTING INFORMATION

Table 1S: S2
Figure 1-3S S3-5
Experimental S4
References S10
Spectra S11

^a Department of Chemistry, Ca' Foscari University, Dorsoduro 2137, 30123, Venice, Italy.

^b Institute of Chemical Research of Catalonia (ICIQ), Avda Països Catalans 16, 43007, Tarragona, Spain.

^c Faculty of Chemistry, University of the Basque Country (UPV-EHU), San Sebastián, Spain. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.

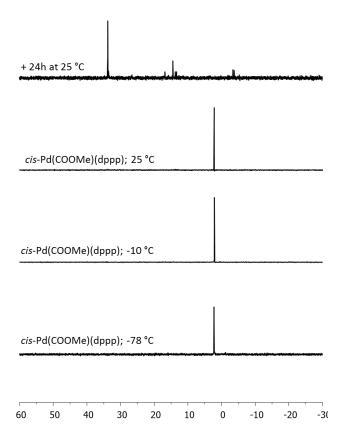
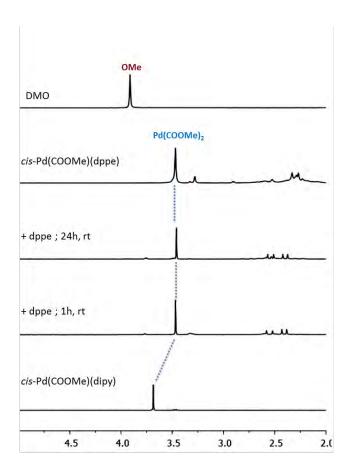

1. Table 1S

Table 1S. Bite angle-effect on the oxidative carbonylation reaction

Entry	P∩P	β_n	TOF			Selectivity			
		[°]	$[mol/(mol \cdot h)]$			[%]			
		_	0	C	A	 0	С	A	
1	dppe	78.1	0.6	0.5	1.3	25	20	55	
2	dppp	86.2	4.0	2.0	5.9	33	17	50	
3	dppb	98.7	116	29	41	62	16	22	
4	dppf	99.1	245	6	15	92	2	6	
5	DPEphos	102.9	39	14	8	64	23	13	
6	Xantphos	110.0	3.0	4.1	1.8	34	46	20	
7	SPANphos	171.9 ^b	1.1	1.9	0.9	29	49	22	


Conditions: $[Pd(OH_2)_n(OTs)_{2-n}(P\cap P)](TsO)_n \ (n=0,\,1)] = 2.10^{-4} \ mol/L, \ Pd/BQ/NEt_3 = 1/700/2, \ P_{CO} = 80 \ atm, \ T = 80 \ ^{\circ}C, \ 1 \ h, \ 5 \ mL \ anhydrous \ \it{i}PrOH.$

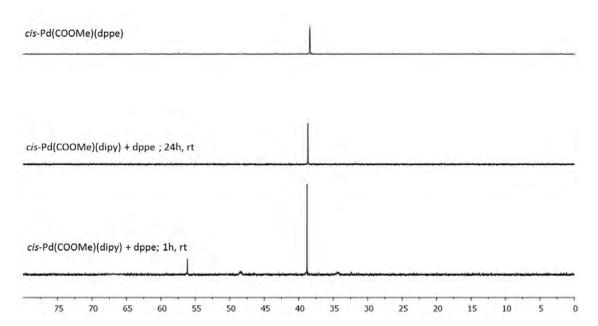

2. Figure 1S

Figure 1S. $^{31}P\{^{1}H\}$ NMR spectra relevant to the stability of cis–[Pd(COOMe)₂(dppp)] in CDCl₂.

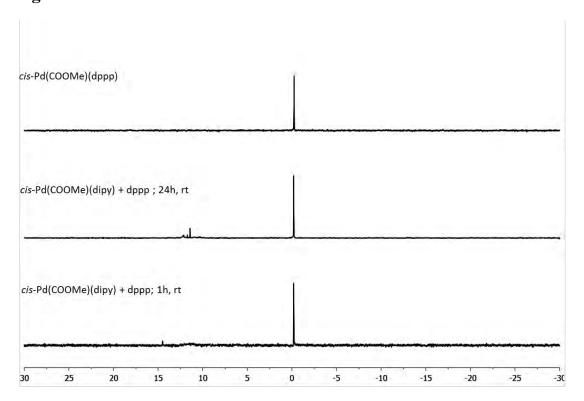

3. Figure 2S

Figure 2S. ¹H and ³¹P{¹H} NMR spectra relevant to the reaction between the *cis*–[Pd(COOMe)₂(dipy)] (0.01 mmol) and dppe (0.01 mmol) in 1 mL of CDCl₂.

4. Figure 3S

Figure 3S. ³¹P{¹H} NMR spectra relevant to the reaction between the *cis*–[Pd(COOMe)₂(dipy)] (0.01 mmol) and dppp (0.01 mmol) in 1 mL of CDCl₂.

2. Experimental

2.1 General Procedures

All reactions were carried out using standard Schlenk techniques under argon atmosphere. Chemicals were purchased from Sigma-Aldrich, Acros Chimica, Strem Chemicals and Eurisotop. NMR spectra were recorded on Bruker 400 and 500 MHz spectrometers. ³¹P and ¹³C spectra were measured ¹H decoupled. All ¹H and ¹³C chemical shifts are reported relative to the residual proton resonance in the deuterated solvents. ³¹P{¹H} signals were referenced to an 85 % aqueous solution of H₃PO₄. NMR under pressure was performed using a 5 mm sapphire HP-NMR tube with titanium head. Infrared spectra were recorded on a Nicolet FT-IR spectrophotometer. Mass spectra were run by MALDI-TOF on a Bruker Daltonics Autoflex spectrometer. GC analysis was performed on: a) Hewlett–Packard Model 6890 chromatograph fitted with HP5, 30 m × 0.32 μm × 0.25 μm column (detector: FID; carrier gas: N₂, 0.7 mL/min; oven: 40 °C (3.5 min) to 250 °C at 15 °C/min). b) Hewlett-Packard Model 5890 Series II chromatograph fitted with 20 % Carbowax 20 M on 80-100 mesh Chromosob W, 1 m × 2.3 mm ID packed column (detector: FID; carrier gas: N₂; 25 mL/min; oven: 80°C). Carbon monoxide (purity 99.9 %) was supplied by Carburos Metálicos. The dppe, dppp, dppb, dppf, dippf, dtbpf, dcypf, Xantphos, DPEphos, (pOCH₃-C₆H₄)₂PCl (pCF₃-C₆H₄)₂PCl, PdCl₂, Pd(OAc)₂, Ag(OTs), TsO·H₂O, NEt₃, TMDA, n-BuLi, Na₂SO₄, and anhydrous solvent (acetone, THF, CH₂Cl₂, n-hexane and Et₂O) were purchased from commercial sources and used as received. 1,4-benzoquinone (BQ) was purified before use from ethyl ether. Dry iPrOH and MeOH were obtained by distillation over Mg and I₂ and stored over 4Å molecular sieves under argon. Dry CDCl₃ and CD₂Cl₂ were distilled over P₂O₅ and stored over 4Å molecular sieves under Ar. pOMe-SPANphos, cis-[Pd(OAc)₂(dppp)] and cis-[Pd(OH₂)(OTs)(dppp)](TsO), cis-[Pd(OAc)₂(dppb)], PdCl₂(CH₃CN)₂], cis-[PdCl₂(dppf)], and cis-[Pd(COOMe)₂(dipy)] were prepared according to literature procedures.

2.2 Synthesis of pCF₃-dppf

This ligand was synthesized and manipulated under an argon atmosphere. To a solution of ferrocene (0.24 g, 1.3 mmol) in n-hexane (7 mL) n-BuLi (0.18 g, 2.8 mmol) and TMDA (0.31 g, 2.7 mmol) were quickly added and the resulting mixture was stirred at 60 °C for 1h. The heating bath was removed, and 3 mL of dry THF were added. The dark brown suspension was cooled to – 78 °C and a solution of (pCF₃-C₆H₄)₂PCl (1.00 g, 2.8 mmol) in THF (2 mL) was added within 10 min. The reaction mixture was allowed to warm overnight at room temperature. The solvent was removed *in vacuo*, Et₂O (20 mL) was added to the residual oil and the insoluble solid was removed by filtration. The filtrate was washed with water and the organic layer was dried over Na₂SO₄ and the solvent was removed *in vacuo*. pCF₃-dppf was purified by rotative chromatography on silica gel using n-hexane. The crude products were recrystallized from n-hexane. Yield: (215 mg) 20 %. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.58 (d, J = 7.70 Hz, 8 H), 7.38 (t, J = 7.70 Hz, 8 H), 4.34 (t, J= 1.81 Hz, 4H), 4.00 (q, J = 1.81 Hz, 4H). ³¹P{¹H} NMR (161 MHz, CDCl₃, 25 °C): δ -13.65. ¹³C

NMR (100 MHz, CDCl₃, 25 °C): 133.6 (d, J = 19.3 Hz), 125.0 (m), 77.21 (s), 77.8 (d, J = 14.5 Hz), 72.7 (m). MALDI–MS: 826.1 [M]^+ .

2.3 Preparation of the complexes

All the operations were made in argon atmosphere by schlenk technique using anhydrous solvents.

2.3.1 Synthesis of cis- $[Pd(OAc)_2(P \cap P)]$ ($P \cap P = dppe$, dppb, dppf, dippf, dtppf, dcypf, pCF_3 -dppf, DPEphos, Xantphos). To a suspension of $Pd(OAc)_2$ (0.4 mmol) in acetone (3 mL) a solution of $P \cap P$ (0.4 mmol) in acetone (5 mL) was added dropwise within 10 min under stirring at room temperature. A precipitate formed in a few seconds. This suspension was concentrated to half volume and n-hexane (20 mL) was added under vigorous stirring. The microcrystalline solid was filtered off, washed with n-hexane and dried under vacuum.

cis-[Pd(OAc)₂(dppe)]. The general procedure was used except that the ligand was dissolved in acetone/CH₂Cl₂ (1/1, 5 mL). Yield: 98 %. The characterizations were in agreement with those reported in literature, hereafter the main data are presented.^{4, 8} IR: ν (OAc) 1613, 1580, 1369, 1319 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.93-7.54 (m, 20H, Ar), 2.25 (m, 4H, CH₂), 1.67 (s, 6H, OAc). ³¹P{¹H} NMR (161 MHz, CDCl₃, 25 °C): δ 59.15 (s);

cis-[Pd(OAc)₂(dppf)]. The general procedure was used except that the ligand was dissolved in acetone/THF (1/1, 5 mL). The characterizations were in agreement with those reported in literature, hereafter the main data are presented. Yield: 89 %. IR: ν (OAc) 1612, 1580, 1364, 1306 cm⁻¹. H NMR (400 MHz, CDCl₃, 25 °C): δ ppm 7.99-7.39 (m, 20H, Ar), 4.42, 4.39 (s, 8H, Cp), 1.41 (s, 6H, OAc). Hy NMR (161 MHz, CD₂Cl₂, 25 °C): δ 30.8 (s).

cis-[Pd(OAc)₂(dippf)]. The general procedure was used except that the ligand was dissolved in acetone/THF (1/1, 5 mL). Yield: 66 %. IR: ν(OAc) 1613, 1574, 1359, 1307 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ ppm 4.66, 4.48 (s, 8H, Cp), 2.50 (m, 4H, *i*Pr), 2.00 (s, 6H, OAc), 1.65, 1.33 (dd, J_{PH} =17.00 Hz, J_{PH} = 7.05 Hz, 24H, *i*Pr). ³¹P{¹H} NMR (161 MHz, CDCl₃, 25 °C): δ 61.74 (s). MALDI-MS: 583.1 [M - AcO⁻]⁺.

[Pd(OAc)₂(dtbpf)]. The general procedure was used except that the ligand was dissolved in THF (5 mL). Yield: 52 %. IR: ν (OAc) 1625, 1310 cm⁻¹. Spectra reveal the presence of isomers in solution. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ ppm 4.93-4.18 (m, 8H, Cp), 1.76-1.12 (m, 42H, OAc, tBut). ³¹P{¹H} NMR (161 MHz, CD₂Cl₂, 25 °C): δ 65.68 (s), 62.81 (s), 45.65 (s). TOF-MS: 639.1 [M - AcO⁻]⁺; 611.8 [M - 2AcO⁻ + MeO⁻]⁺

cis-[Pd(OAc)₂(dcypf)]. Yield: 63 %. IR: ν(OAc) 1620, 1604, 1360, 1297 cm⁻¹. ¹H NMR (400 Mz, CD₂Cl₂, 25 °C): δ ppm 4.62, 4.47 (s, 8H, Cp), 1.95-0.92 (m, 50H, OAc, Cy). ³¹P{¹H} NMR (161 MHz, CD₂Cl₂, 25 °C): δ 52.03 (s).

cis-Pd(OAc)₂(DPEphos). The general procedure was used except that the ligand was dissolved in THF (5 mL). Yield: 90 %. IR: ν(OAc) 1613, 1581, 1363, 1310 cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ ppm 7.66-6.12 (m, 28H, Ar), 1.32 (m, 6H, OAc). ³¹P{¹H} NMR (161 MHz, CD₂Cl₂, 25 °C): 28.14 ppm. TOF-MS: 704.0 [M - AcO⁻]⁺, 736.1 [M – (AcO⁻) + MeOH] ⁺.

cis-Pd(OAc)₂(Xantphos). The general procedure was used except that the ligand was dissolved in CH₂Cl₂ (5 mL). Yield: 78 %. IR: ν(OAc) 1568, 1387 cm⁻¹. ¹H NMR (400 MHz,

CDCl₃, 25 °C): δ 7.61-6.96 (m, 26H, Ar), 1.79 (s, 6H, C(CH₃)₂), 1.71 (m, 6H, OAc). ³¹P{¹H} NMR (161 MHz, CDCl₃, 25 °C): δ 28.16 (s).

2.3.2 Synthesis of $[PdCl_2(P \cap P)]$ $(P \cap P = pCF_3 - dppf, pMeO - dppf, SPANphos)$. In literature several procedures for the synthesis of these complexes are reported. For instance, *trans*– $[PdCl_2(SPANphos)]$ was obtained by reaction of $[PdCl_2(cod)]$ (cod = 1,5–cyclooctadiene) with stoichiometric amounts of SPANphos.²

We followed a similar procedure but using $[PdCl_2(CH_3CN)_2]$ as palladium precursor. To a $[PdCl_2(CH_3CN)_2]$ (0.3 mmol) dissolved in 5 mL of CH_2Cl_2 a solution of the ligand (0.3 mmol) in CH_2Cl_2 (5 mL) was added dropwise. After 30 min under stirring at room temperature the solution was concentrated at ca. 2 mL and Et_2O (20 mL) was added. The formed microcrystalline solid was filtered off, washed with Et_2O and dried under vacuum.

cis-[PdCl₂(*p*CF₃-dppf)]. Yield: 74 %. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 8.07-7.78 (m, 8H, Ph), 4.58, 4.32 (s, 8H, Cp). ³¹P{¹H} NMR (161 MHz, CD₂Cl₂, 25 °C): δ 36.48 (s).

cis-[PdCl₂(*p*MeO-dppf)]. Yield: 79 %. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 7.86-6.97 (m, 16H, Ph), 4.42, 4.23 (s, 8H, Cp), 3.89 (s, 12H, OMe). 31 P{ 1 H} NMR (161 MHz, CD₂Cl₂, 25 °C): δ 34.33 (s).

trans-[PdCl₂(SPANPhos)]. Yield: 85 %. 1 H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 8.03-6.55 (m, 22H, Ar), 6.55 (m, 2H, Ar), 2.70 (d, J_{HH} =13.82 Hz, 2H, H), 2.14 (s, 6H, CH₃), 2.06 (d, J_{HH} =13.82 Hz, 2H, H), 1.50 (s, 6H, CH₃), 1.41 (s, 6H, CH₃). 31 P{ 1 H} NMR (161 MHz, CD₂Cl₂, 25 °C): δ 28.38 (s).

2.3.3 Synthesis of $[Pd(OH_2)_n(OTs)_{2-n}(P \cap P)](TsO)_n$ ($n = 0, 1; P \cap P = dppe, dppb, dppf, dippf, dtbpf, dcypf, pCF_3-dppf, DPEphos, Xantphos, pMeO-dppf, SPANphos). Two different methods have been employed for the synthesis of these complexes. Method A: the <math>[Pd(OAc)_2(P \cap P)]$ complexes is treated with two equivalents of $TsOH \cdot H_2O$ to form the title complexes as already proposed by our groups for the synthesis of cis- $[Pd(OH_2)(OTs)(dppp)](TsO)$. Method B: it has been used the standard already reported procedure of synthesis. 10

The title complex was formed by treating the $[PdCl_2(P \cap P)]$ with Ag(OTs). TsO^- is a labile ligand and it can be displaced from the coordination sphere of the palladium by the water, present in the system, forming a cationic *aquo* complexes. Indeed in solution the $^{31}P\{^1H\}$ NMR spectra of these *cis* complexes indicates that the two phosphorus atoms are equivalent (singlet signal) probably due to the fast exchange of labile water, TsO^- or solvent. Determining the formation of the cationic or the neutral complexes is crucial for the interpretation of the H_2O^{11} and TsO^{12} signals in the IR spectra.

Method A. To a suspension of $[Pd(OAc)_2(P \cap P)]$ (0.2 mmol) in acetone (3 mL) a solution of TsOH·H₂O (0.4 mmol) in acetone (3 mL) was added dropwise. After **a** 15 minute stirring at room temperature the solution was concentrated to half volume and *n*-hexane (20 mL) was added under vigorous stirring. The microcrystalline solid formed was filtered off, washed with *n*-hexane and dried under vacuum.

cis-[Pd(OH₂)(OTs)(dppe)](TsO). The characterizations were in agreement with those reported in literature, hereafter the main data are presented. Yield 80 %. IR: ν (OH₂) 3225, ν (TsO) 1242, 1220, 1029, 1004, 998 cm⁻¹. H NMR (400 MHz, CDCl₃, 25 °C): δ 7.67-6.69 (m, 28H, Ar), 2.51, 2.40 (m, 4H, CH₂), 2.04, 2.03 (s, 6H, CH₃-TsO). ³¹P{¹H} NMR (161 MHz, CDCl₃, 25 °C): δ 70.95 (s).

cis-[Pd(OH₂)(OTs)(dppb)](TsO). The characterizations were in agreement with those reported in literature, hereafter the main data are presented.⁴ Yield 78 %. IR: ν (OH₂) 3245, ν (TsO) 1256, 1219, 1028, 1007, 995 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.65-6.99 (m, 28H, Ar), 3.95 (m, 4H, CH₂), 2.31 (s, 6H, CH₃-TsO), 2.10 (m, 4H, CH₂). ³¹P{¹H} NMR (161 MHz, CDCl₃, 25 °C): δ 34.61 (s).

cis-[Pd(OH₂)₂(dppf)](TsO)₂. The characterizations were in agreement with those reported in literature, hereafter the main data are presented. ^{10b, 13} Yield: 87 %. IR: ν (OH₂) 3422, ν (TsO) 1222, 1031, 1007, 998 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.98 - 6.89 (m, 28H, Ar), 4.70, 4.53 (s, 8H, Cp), 2.33 (bs, H₂O), 2.27 (s, 6H, CH₃-TsO). ³¹P{¹H} NMR (161 MHz, CDCl₃, 25 °C): δ 45.71 (s).

cis-[Pd(OH₂)(OTs)(dippf)](TsO). The characterizations were in agreement with those reported in literature, hereafter the main data are presented. ^{10c} Yield: 66%. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.63-7.11 (m, 8H, Ar), 4.83, 4.63 (s, 8H, Cp), 2.71 (m, 4H, *i*Pr), 2.35 (s, 6H, CH₃-TsO), 1.73, 1.39 (dd, J_{PH} = 16.93 Hz, J_{PH} = 9.89 Hz, 24H, *i*Pr). ³¹P{¹H} NMR (161 MHz, CDCl₃, 25 °C): δ 83.77 (s). MALDI-MS: 695.1 [M - H₂O - TsO⁻]⁺.

cis-[Pd(OH₂)(OTs)(dtbpf)](TsO). Yield: 82 %. IR: ν(H₂O) 3394, ν(TsO) 1279, 1239, 1031, 1007, 983 cm⁻¹. ¹H NMR (500 MHz, CD₂Cl₂, -70 °C): δ 7.77-7.22 (m, 8H, Ar), 5.06,4.86 (m, 8H, Cp), 2.41 (s, 6H, CH₃-TsO), 1.70-1.19 (m, 36H, *t*But). ³¹P{¹H} NMR (201 MHz, CD₂Cl₂, -70 °C): δ 90.95 (s). TOF-MS: 615.8 [M - (2 TsO⁻)+(OH⁻)[+ 635.1 [M - (2 TsO⁻)+(OH⁻)(MeO⁻)+Li⁺]⁺.

cis-[Pd(OTs)₂(dcypf)]. Yield: 75 %. IR: v(OTs) 1234, 1030, 1007 cm⁻¹. ¹H NMR (500 MHz, CD₂Cl₂, -70 °C): δ 7.74, 7.19 (s, 8 H, Ar), 4.82, 4.64 (s, 8H, Cp), 2.40 (s, 6H, CH₃-TsO), 1.85-1.30 (m, 44H, Cy). ³¹P{¹H} NMR (201 MHz, CD₂Cl₂, -70 °C): δ 76.89 (s).

cis-[Pd(OTs)₂(pCF₃-dppf)]. Yield: 71 %. IR: ν(OTs) 1249, 1030, 1004 cm⁻¹. ¹H NMR (500 MHz, CD₂Cl₂, -70 °C): δ 8.22-7.05 (s, 24H, Ar), 4.70, 4.49 (s, 8H, Cp), 2.40 (s, 6H, CH₃-TsO). ³¹P{ 1 H} NMR (201 MHz, CD₂Cl₂, -70 °C): δ 37.14 (s).

cis-[Pd(OH₂)(OTs)(DPEphos)](TsO). Yield: 82 %. IR: ν (TsO) 1218, 1029, 997 cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 7.65-6.73 (m, 36H, Ar), 2.36 (s, 6H, CH₃-TsO). ³¹P{¹H} NMR (161 MHz, CD₂Cl₂, 25 °C): δ 29.50 (s). TOF-MS: 694.0 [M – (2 TsO⁻)+(MeO⁻)]⁺;

cis-[Pd(OH₂)(OTs)(Xantphos)](TsO). Yield: 70 %. IR: ν (OH₂) 3438, ν (TsO) 1257, 1227, 1034, 1011, 1001 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.60-6.97 (m, 34H, Ar), 2.28 (s, 6H, CH₃-TsO), 1.82 (s, 6H, C(CH₃)₂). ³¹P{¹H} NMR (161 MHz, CDCl₃, 25 °C): δ 45.23 (s).

Method B. Ag(OTs) (0.2 mmol) was dissolved in 10 mL of MeOH with the exclusion of light and $[PdCl_2(P\cap P)]$ (0.1 mmol) dissolved in 10 mL of CH_2Cl_2 was added to the solution . The mixture was stirred at room temperature for 2 h. AgCl was filtered off through Celite and the solvent was evaporated under reduced pressure. The crude solid was dissolved again in acetone (ca.

1-2 mL) and by addition of n-hexane (20 mL) a microcrystalline solid was formed. The solid was filtered off, washed with n-hexane and dried under vacuum.

cis-[Pd(OTs)₂(*p*MeO-dppf)]. Yield: 78 %. IR: ν(OTs) 1255, 1027, 1009 cm⁻¹. ¹H NMR (500 MHz, CD₂Cl₂, -70 °C): δ 7.85-6.96 (s, 24H, Ar), 4.66, 4.56 (s, 8H, Cp), 3.88 (s, 12H, CH₃O), 2.34 (s, 6H, CH₃-TsO). ³¹P{¹H} NMR (201 MHz, CD₂Cl₂, -70 °C): δ 45.44 (s).

trans-[Pd(OTs)₂(SPANPhos)]. Yield: 80 %. IR: ν (OTs) 1223, 1030, 1009 cm⁻¹ ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 8.05-6.91 (m, 32H, Ar), 2.36 (s, 6H CH₃-TsO), 2.31 (s, 6H, CH₃), 2.27 (d, J_{HH} =14.17 Hz, 2H, H), 1.53 (d, J_{HH} =14.17 Hz, 2H, H), 1.30 (s, 6H, CH₃), 1.26 (s, 6H, CH₃). ³¹P{¹H} NMR (161 MHz, CD₂Cl₂, 25 °C): δ 38.13 (s).

- 2.3.4 Synthesis of cis-[Pd(C₂O₄)(dppf)]. To a suspension of cis-[Pd(OAc)₂(dppf)] (0.25 mmol) in ethanol (8 mL) a solution of H₂C₂O₄·2H₂O (0.28 mmol) in acetone (5 mL) was added dropwise under stirring. After 20 minutes Et₂O (20 mL) was added to the solution and the formed microcrystalline solid was filtered off, washed with H₂O, Et₂O and dried under vacuum. Yield: 80 %. IR: ν (C₂O₄) 1697, 1676, 1357, 780 cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 7.77-7.47 (m, 20H, Ar), 3.72, 3.58 (s, 8H, Cp). ³¹P{¹H} NMR (161 MHz, CD₂Cl₂, 25 °C): δ 34.04 ppm. Elem anal. Calcd for C₃₆H₂₈O₄P₂FePd: C, 57.74; H, 3.77; Found: C, 57.76; H, 3.99.
- 2.3.5 Synthesis of cis-[Pd(SO₄)(dppf)]·H₂O. To a suspension of [Pd(OAc)₂(dppf)] (0.25 mmol) in ethanol (3 mL) a solution of H₂SO₄ (0.3 mmol) in ethanol (1 mL) was added dropwise under stirring. After 20 minutes 20 mL of Et₂O were added to the solution, and the formed microcrystalline solid was filtered off, washed with Et₂O and dried under vacuum. Yield: 86 %. IR: $v(H_2O)$ 3656, 3495, $v(SO_4)$ 1260, 1142, 1099, 897 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.75-7.47 (m, 20H, Ar), 4.54, 4.40 (s, 8H, Cp), 1.58 (br, H₂O). ³¹P{¹H} NMR (161 MHz, CDCl₃, 25 °C): δ 41.71 ppm. Elem anal. Calcd for C₃₄H₃₀O₅P₂SFePd: C, 52.70; H, 3.90; S, 4.13; Found: C, 52.89; H, 3.65; S, 4.05.
- 2.3.6 Synthesis of $cis-[Pd(COOMe)_2(P \cap P)]$ ($P \cap P = dppe$, dppp). $cis-[Pd(OH_2)(OTs)(P \cap P)](TsO)$ (0.1 mmol) was dissolved in 2 mL of MeOH and the solution was pressurized with carbon monoxide (2 atm) at 0 °C for 10 minutes under stirring. The reaction mixture turned from yellow to brown. NEt₃ (0.8 mmol) were then added while stirring 10 more minutes. The light brown solid formed was collected on a filter, washed with MeOH, Et₂O and dried under vacuum.

cis-[Pd(COOMe)₂(dppe)]. Yield: 80 %. IR: ν (C=O) 1627, 1653 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.97-7.27 (m, 20H, Ar), 3.47 (s, 6H OCH₃), 2.38-2.32 (m, 4H, CH₂). ³¹P{¹H} NMR (161 MHz, CDCl₃, 25 °C): δ 38.8 ppm. Elem anal. Calcd for C₃₀H₃₀O₄P₂Pd: C, 57.84; H, 4.85; Found: C, 58.18; H, 4.95.

cis-[Pd(COOMe)₂(dppp)]. Yield: 86 %. IR: ν (C=O) 1622, 1647cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 7.56-7.38 (m, 20H, Ar), 3.00 (s, 6H OCH₃), 2.50 (m, 4H, CH₂), 1.89 (m, 2H,

CH₂) ppm. $^{31}P\{^{1}H\}$ NMR (161 MHz, CD₂Cl₂, 25 °C): δ 0.25 ppm. Elem anal. Calcd for $C_{31}H_{32}O_{4}P_{2}Pd$: C, 58.46; H, 5.06; Found: C, 57.82; H, 5.18.

2.3.7 Synthesis of trans–[Pd(COOMe)(OTs)(SPANphos)]. A 5 mm sapphire HPNMR tube was charged under Ar with a solution of trans–[Pd(OTs)₂(SPANphos)] (5 mg, 0.004 mmol) in 0.5 mL of CD₂Cl₂ with 10 % of MeOH and then pressurized with 10 atm of CO at –78 °C. NMR analyses reveal the formation of the title complex. ¹H NMR (500 MHz, CD₂Cl₂/MeOH 10%, -78 °C): δ 7.66-7.21 (m, 32H, Ar), 3.13 (s, 3H, COOCH₃), 2.35 (s, 6H, CH₃-TsO), 2.16 (s, 6H, CH₃), 2.08 (m, 2H, H), 1.53-1.19 (m, 12H, H + CH₃). ³¹P{¹H} NMR (201 MHz, CD₂Cl₂/MeOH 10%, 25 °C): δ 15.92 (d, J_{PP} =180 Hz), 9.19 (d, J_{PP} = 180 Hz).

2.4 In situ NMR study on the preparation of $[Pd(COOMe)_2(P \cap P)]$ $(P \cap P = dppe, dppp, dppf, DPEphos, Xantphos, SPANphos)$ by exchange reaction.

A solution of cis–[Pd(COOMe)₂(dipy)] (2.5 mg, 0.007 mmol) in 0.2 mL of CD₂Cl₂ was charged in a NMR tube under Ar. To this mixture, at –78 °C, a solution of the desired P \cap P (0.007 mmol) dissolved in 0.2 mL of CD₂Cl₂ was added. The exchange reaction was followed by ³¹P{ 1 H}and 1 H NMR spectroscopy. When with dppf the solution was prepared in a 5 mm sapphire HPNMR tube which was then pressurized with 30 atm of CO at –78°C. The reaction was followed by variable–temperature 31 P{ 1 H}and 1 H NMR spectroscopy.

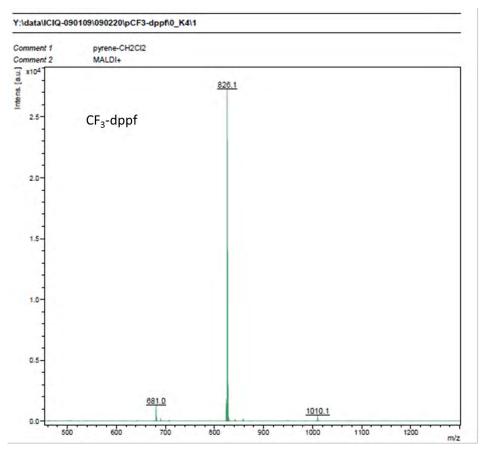
2.5 Carbonylation procedures.

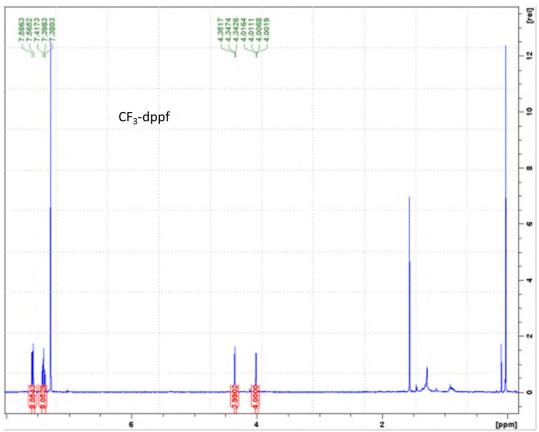
Typically, 5 mL of a solution of *i*PrOH and NEt₃ was introduced into a *ca*.15 mL glass bottle, previously evacuated by Ar flow, containing 0.001 mmol of catalyst precursor and the desired amount of BQ. The glass bottle was then placed in an autoclave of *ca*. 50 mL volume, previously evacuated by a vacuum pump, under Ar flow. The autoclave was first purged several (4–5) times with CO, then pressurized and heated to the desired pressure and temperature. The solution was stirred with a magnetic bar. After the desired reaction time, the autoclave was rapidly cooled to 0 °C and slowly depressurized. The solution was analyzed by GC using *n*–undecane and toluene as internal standard.

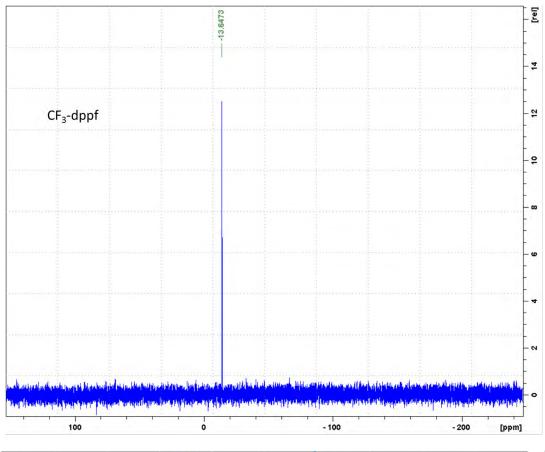
3. References

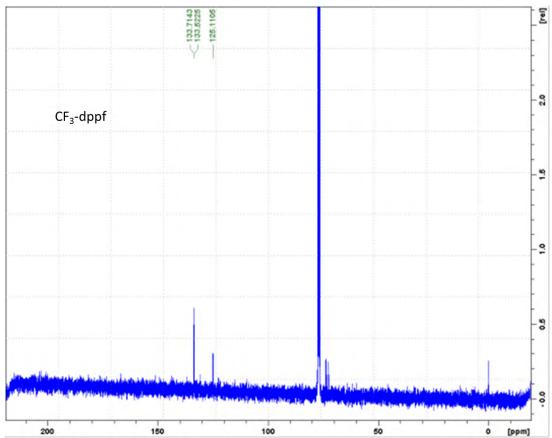
¹ M. Ogasawara, K. Takizawa, T. Hayashi, Organometallics, 2002, 21, 4853.

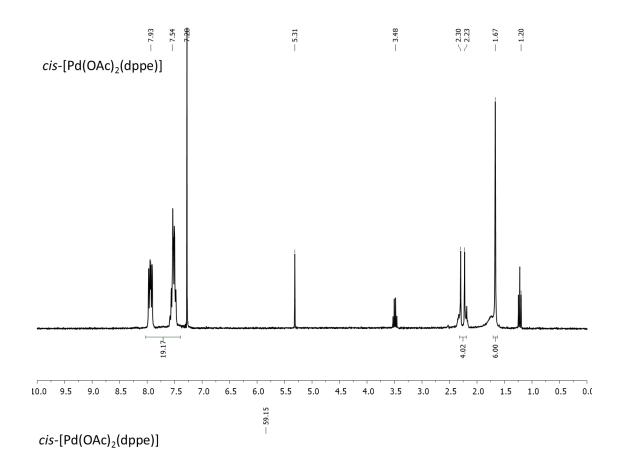
² Z. Freixa, M.S. Beentjes, G. D. Batema, C. B. Dieleman, G. P. F. van Strijdonck, J. N. H. Reek, P. C. J. Kamer, J. Fraanje, K. Goubitz, P. W. N. M. van Leeuwen, *Angew. Chem. Int. Ed.*, 2003, 42, 1284.

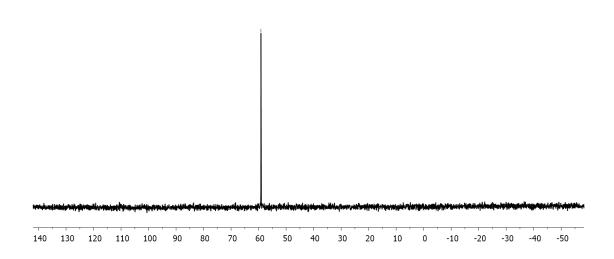

³ F. Benetollo, R. Bertani, G. Bombieri, L. Toniolo, *Inorg. Chim. Acta*, 1995, 233, 5.

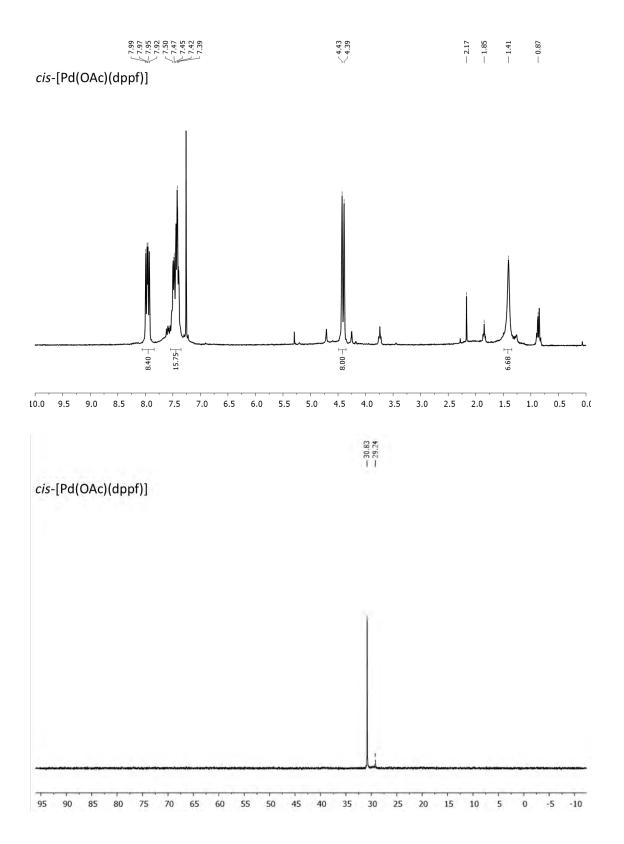

⁴ T. J. Mooibroek, E. Bouwman, M. Lutz, A. L. Spek, E. Drent, Eur. J. Inorg. Chem., 2010, 298.

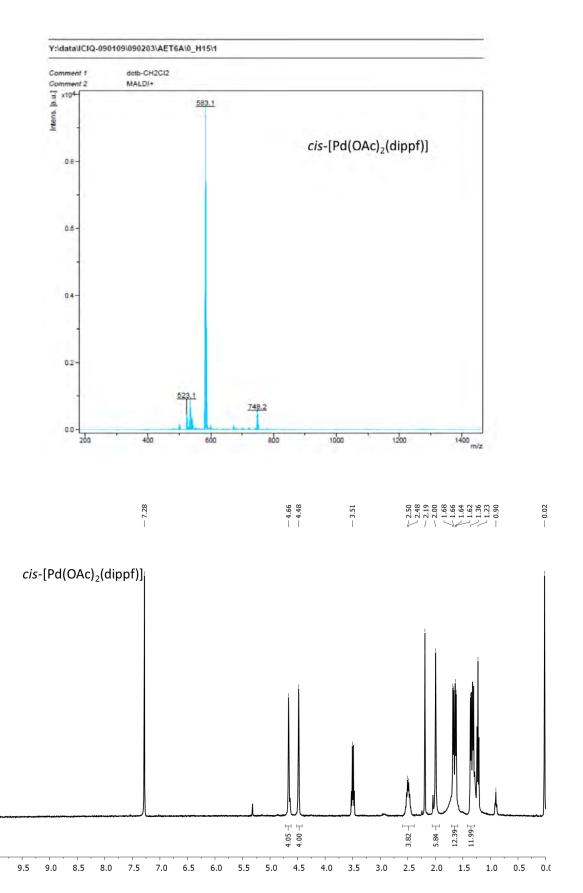

⁵ a) M. Noskowska, E. Sliwinska, W. Duczmal, *Transit. Metal. Chem.* 2003, 28, 756. b) M. A. Andrews, C. Tony, T. Chang, C. W. F. Cheng, T. J. Emge, K. P. Kelly, T. F. Koetzle, *J. Am. Chem. Soc.*, 1984, 106, 5913.

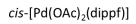

- 6 a) I. R. Butler, W. R. Cullen, T. J. Kim, S. J. Rettig, J. Trotter, *Organometallics*, 1985, 4, 972. b) T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, K. Hirotsu, *J. Am. Chem. Soc.*, 1984, 106, 158.
- 7 a) R. Santi, A. M. Romano, R. Garrone, R. Millini, *J. Organomet. Chem.*, 1998, **566**, 37. b) P. Giannoccaro, N. Ravasio, M. Aresta, *J. Organomet Chem.*, 1993, **451**, 243. c) G. D. Smith, B. E. Hanson, J. S. Merola, F. J. Waller, *Organometallics*, 1993, **12**, 568.
- 8 a) C. Bianchini, H. M. Lee, A. Meli, W. Oberhauser, F. Vizza, P. Brueggeller, R. Haid and C. Langes, *Chem. Commun.*, 2000, 777. b) C. Bianchini, H. M. Lee, A. Meli, W. Oberhauser, M. Peruzzini, F. Vizza, *Organometallics*, 2002, **21**, 16.
- 9 M. Pourshahbaz, M. Irandoust, R. Mohsen, E. Rafiee, M. Joshaghani, *Polyhedron*, 2009, **28**, 609.
- 10 a) F. Fochi, P. Jacopozzi, E. Wagelius, K. Rissanen, P. Cozzini, E. Mastrantoni, E. Fisicaro, P. Manini, R. Fokkens, E. Dalcanale, *J. Am. Chem. Soc.*, 2001, 123, 7539. b) O. V. Gustev, A. M. Kalsin, M. G. Peterleintner, P. V. Petrovskii, K. A. Lyssenko, N. G. Akhmedov, C. Bianchini, A. Meli, W. Oberhauser, *Organometallics*, 2002, 21, 3637. c) C. Bianchini, A. Meli, W. Oberhauser, S. Parisel, E. Passaglia, F. Ciardelli, O. V. Gusev, A. M. Kal'si, N. Vologdin, *Organometallics*, 2005, 24, 1018. d) C. Bianchini, A. Meli, W. Oberhauser, A. M. Segarra, C. Claver, E. J. G. Suarez, *J. Mol. Catal. A: Chem.*, 2007, 265, 292.
- 11 J. Vicente, A. Arcas, Coordin. Chem. Rev. 2005, 249, 1135.
- 12 E. Amadio, G. Cavinato, A. Dolmella, L. Ronchin, L. Toniolo, A. Vavasori, *J. Mol. Catal. A: Chem.* 2009, **298**, 103.
- 13 C. Bianchini, A. Meli, W. Oberhauser, M. A Zuideveld, Z. Freixa, P. C. J. Kamer, A. L. Spek, O. V. Gusev, A. M. Kal'sin, Organometallics, 2003, 22, 2409.

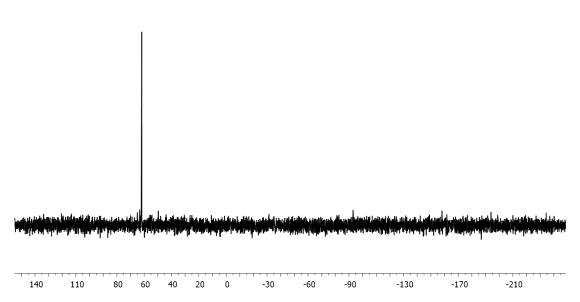

4. Spectra

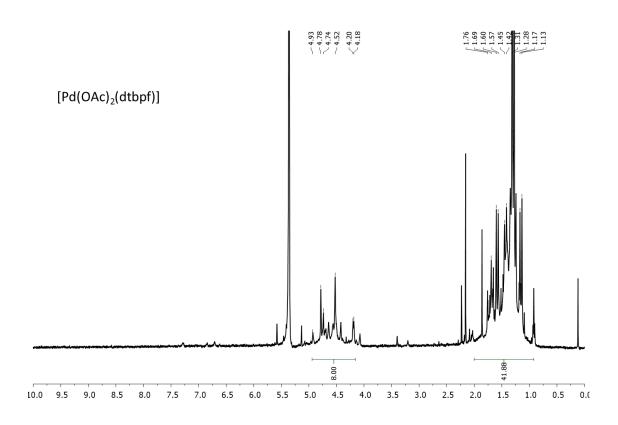


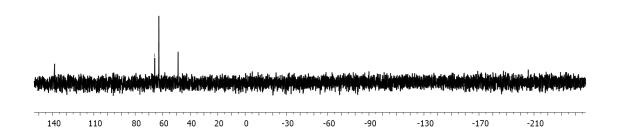


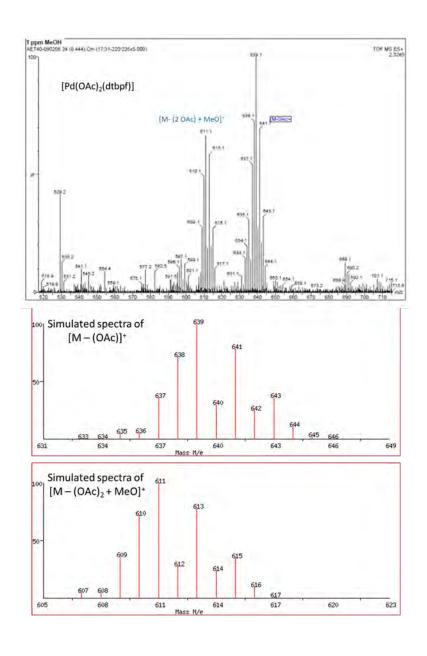


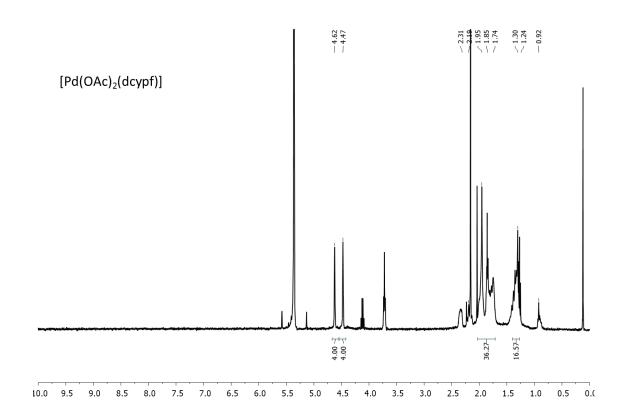


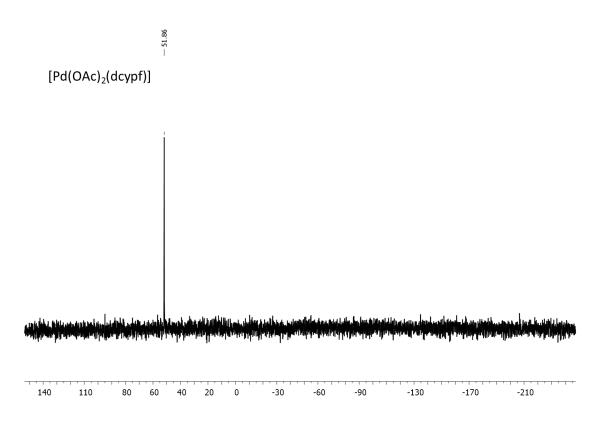


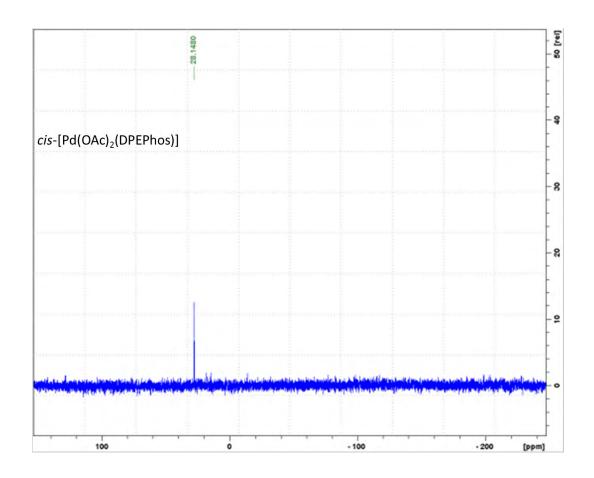


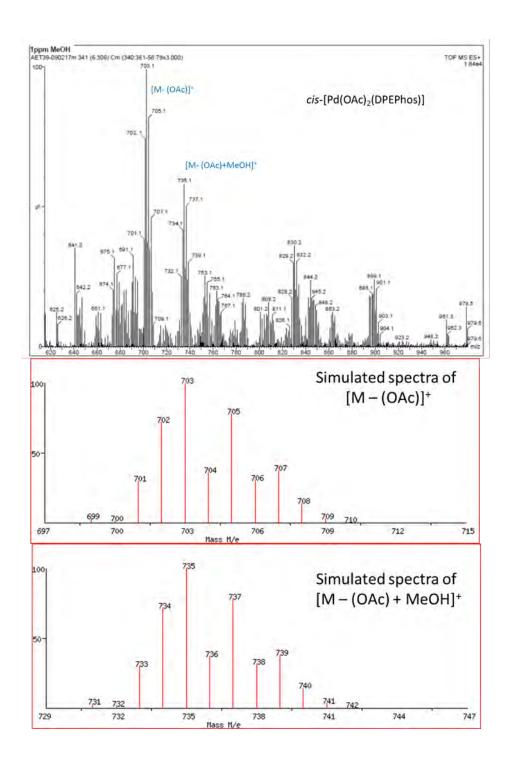


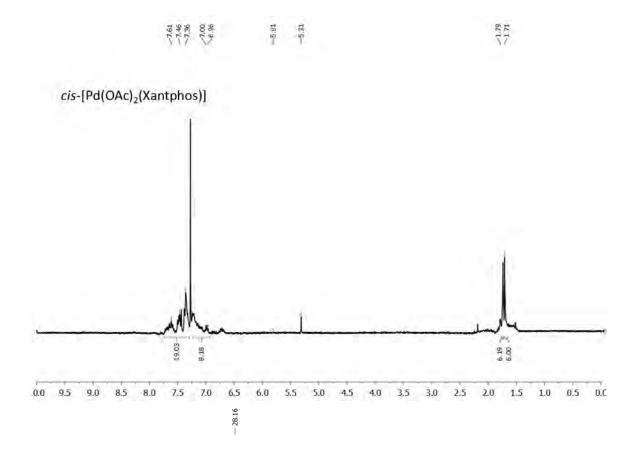


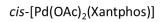


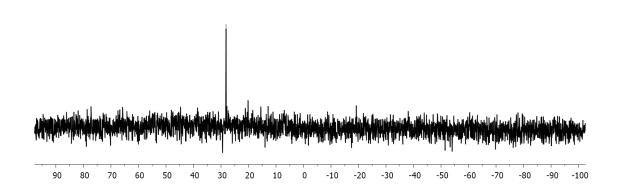


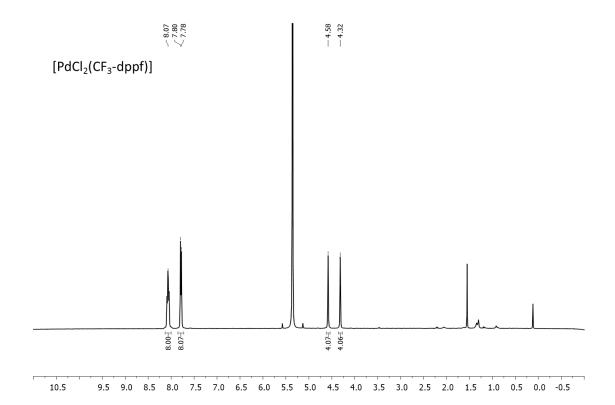

[Pd(OAc)₂(dtbpf)]

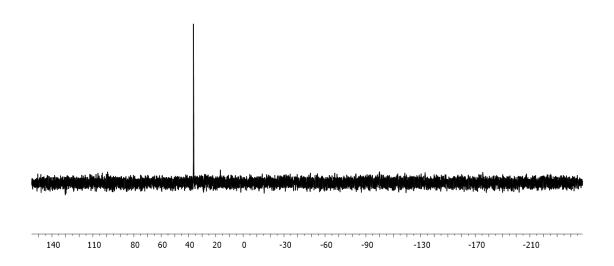


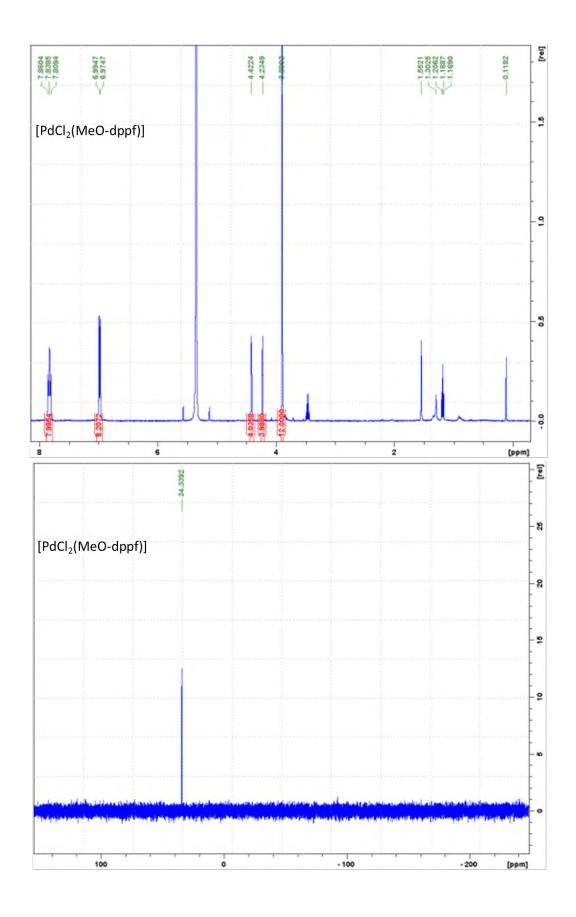


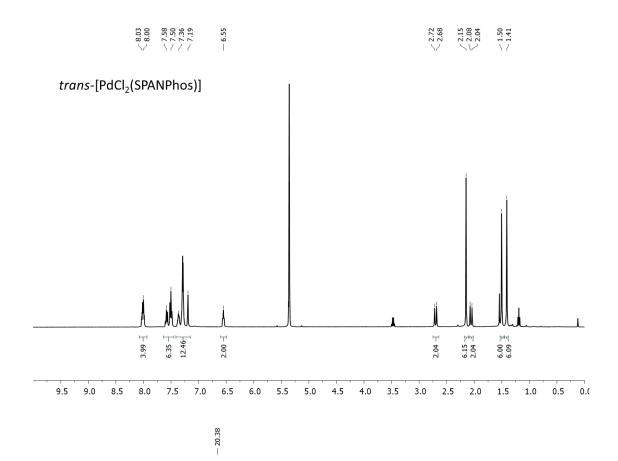


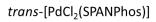


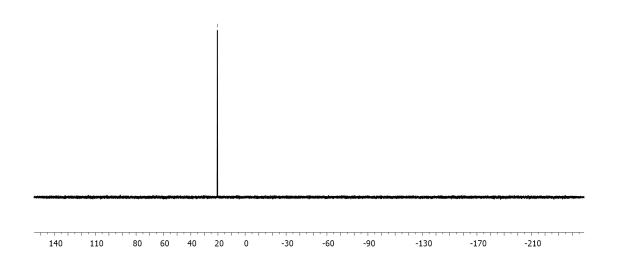


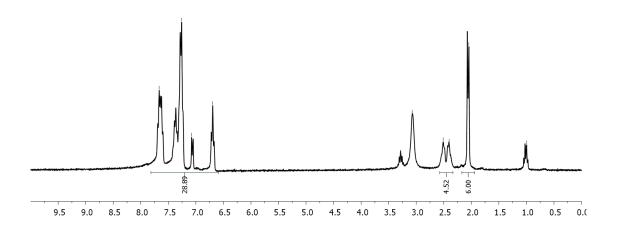


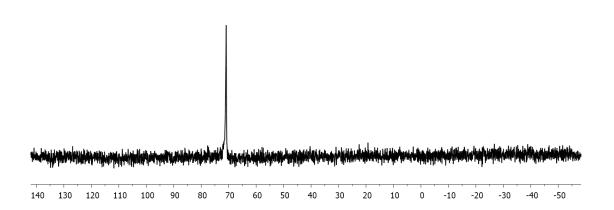


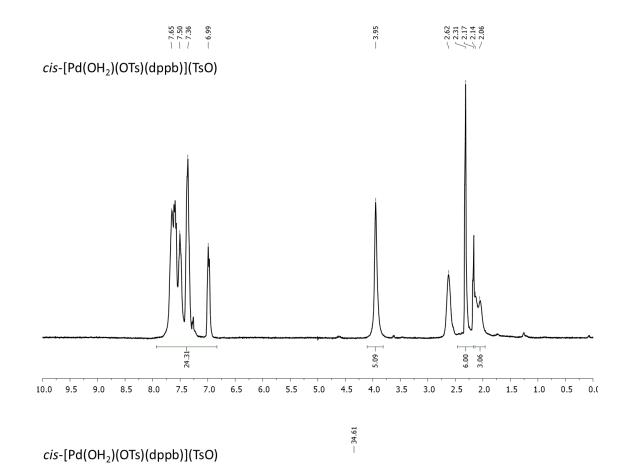


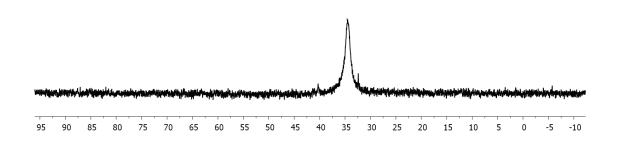


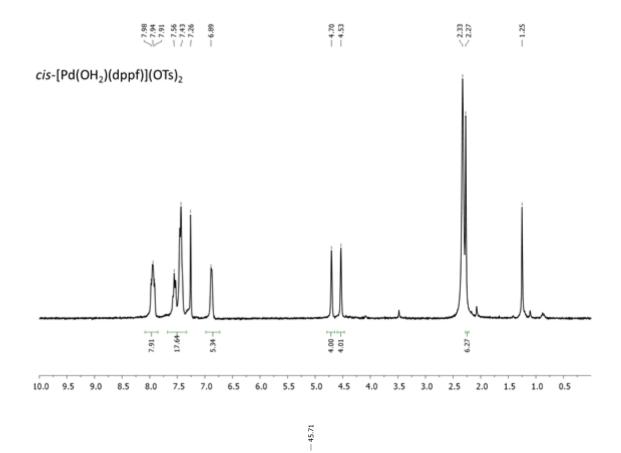

[PdCl₂(CF₃-dppf)]

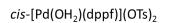


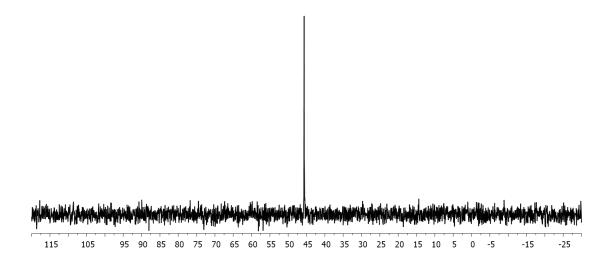


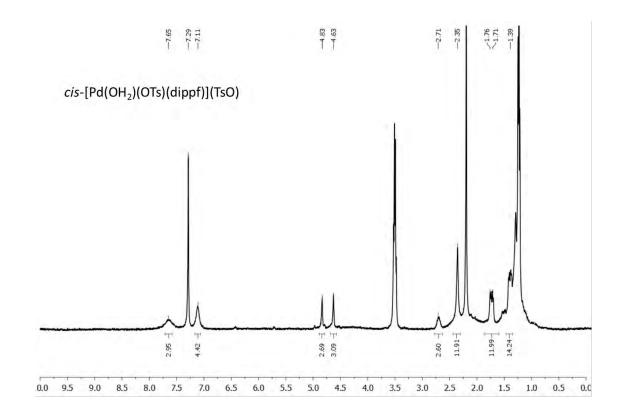


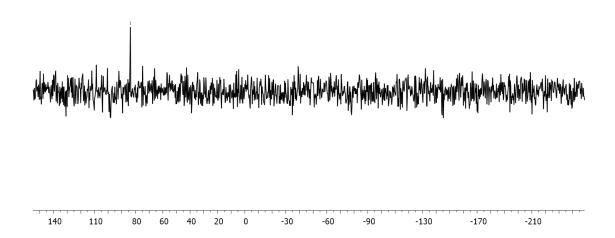


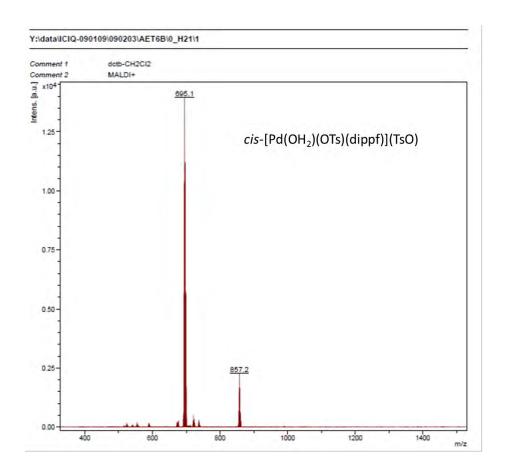


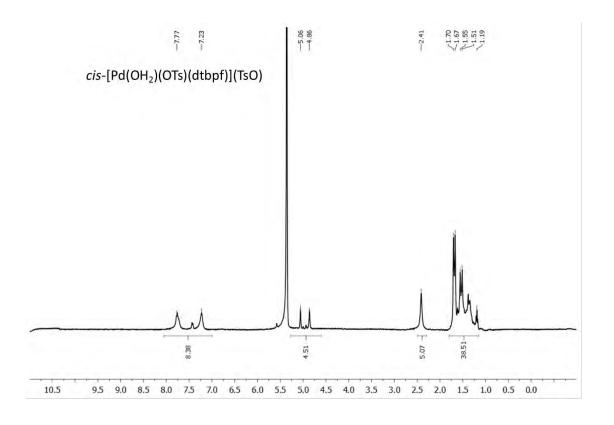

cis-[Pd(OH₂)(OTs)(dppe)](TsO)

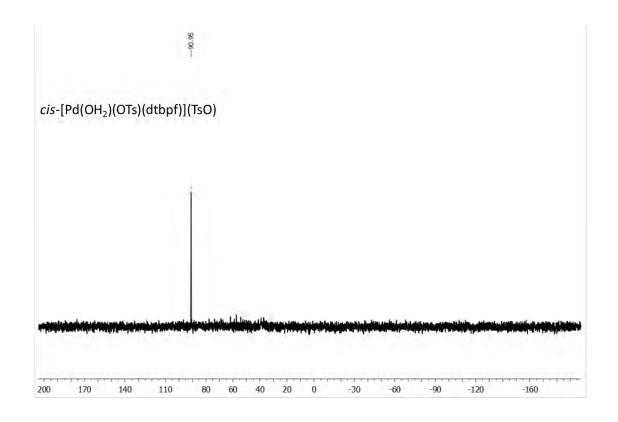


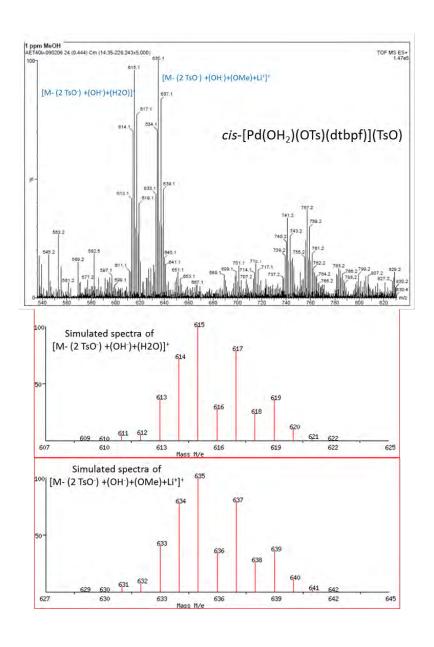


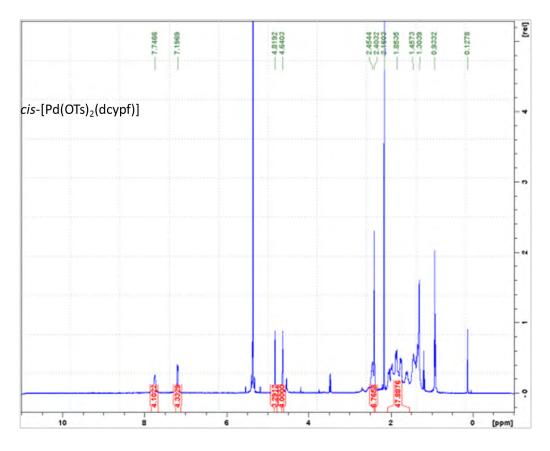


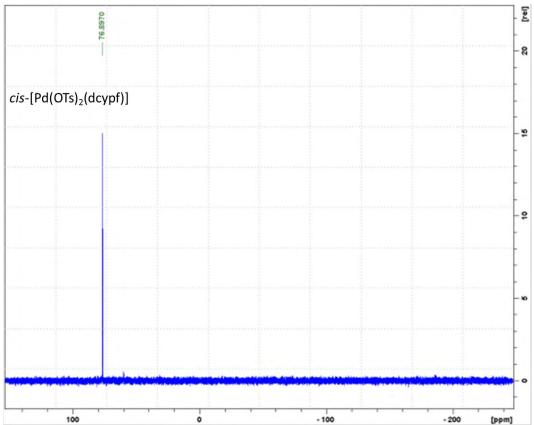


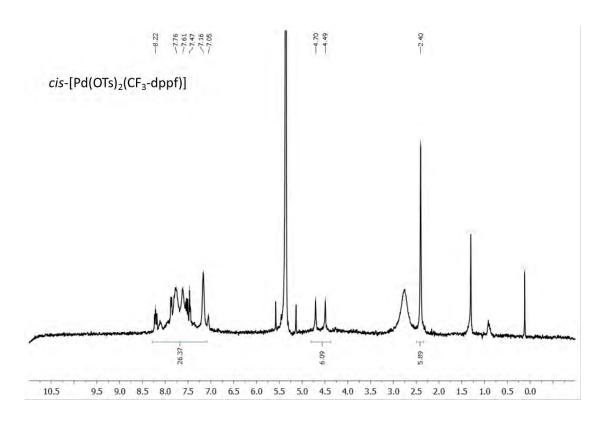


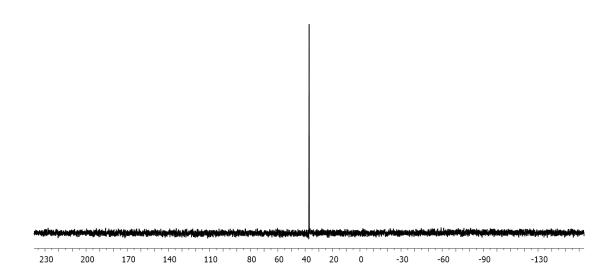

-83.77

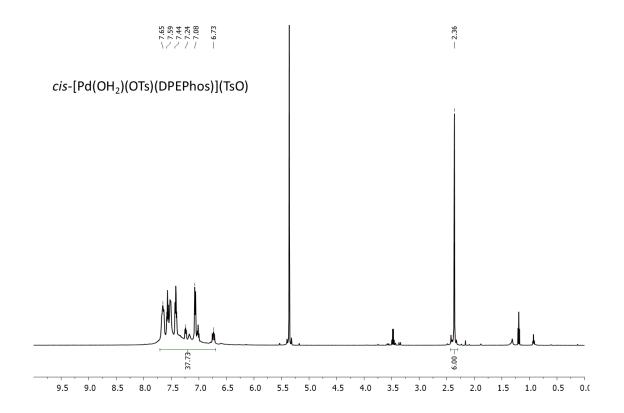

cis-[Pd(OH₂)(OTs)(dippf)](TsO)

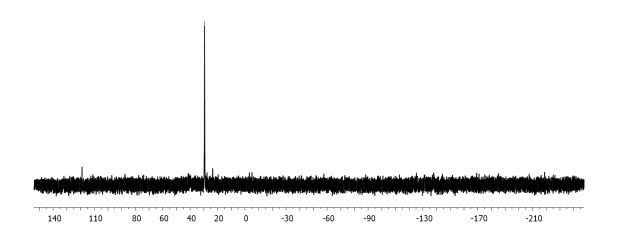


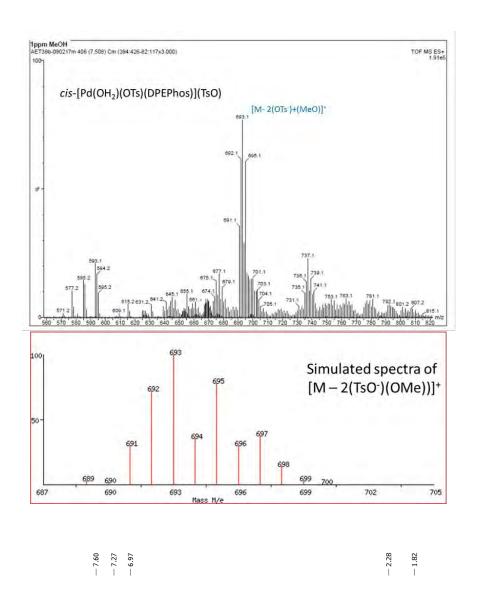


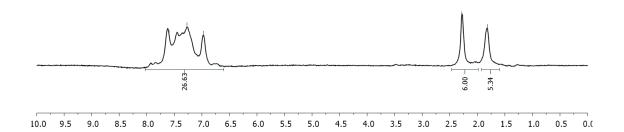


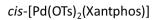


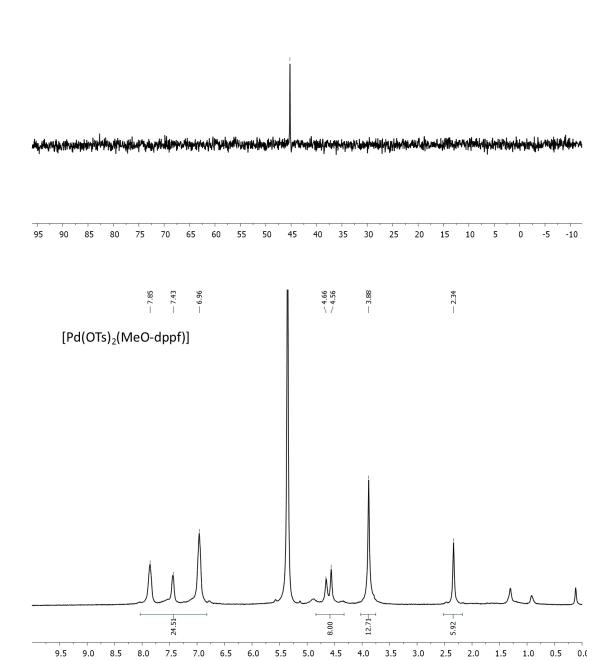


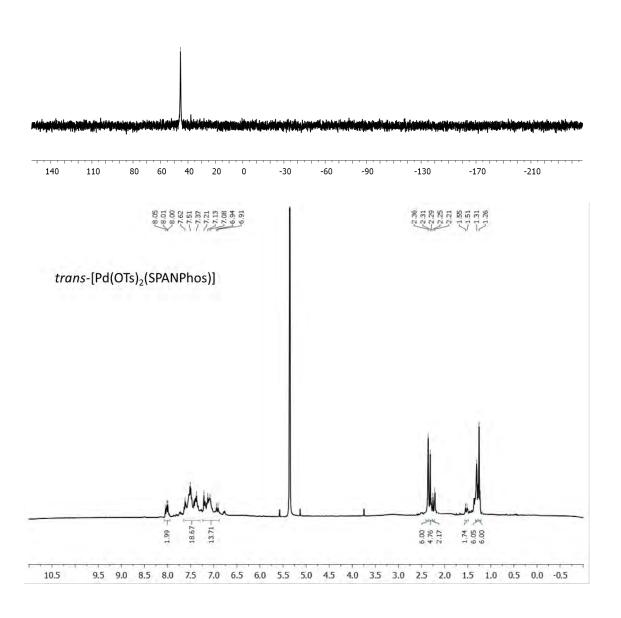

cis-[Pd(OTs)₂(CF₃-dppf)]

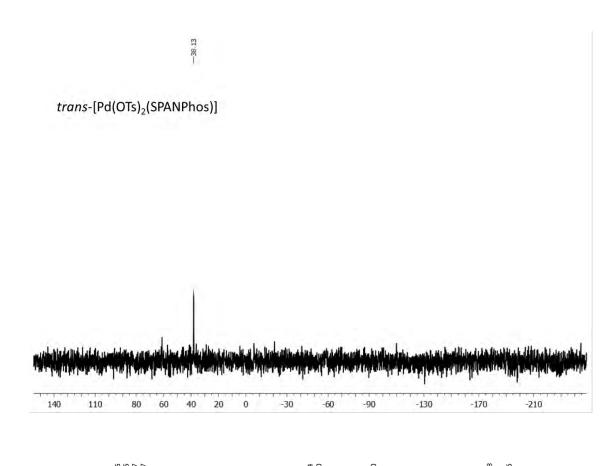


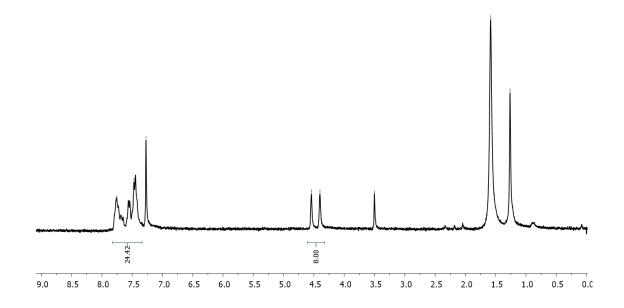

-29.50

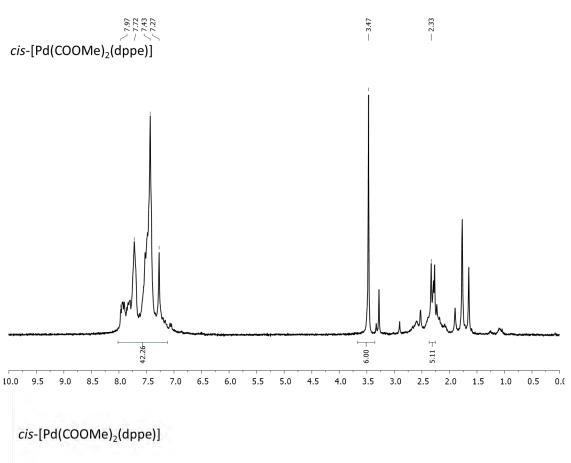

cis-[Pd(OH₂)(OTs)(DPEPhos)](TsO)

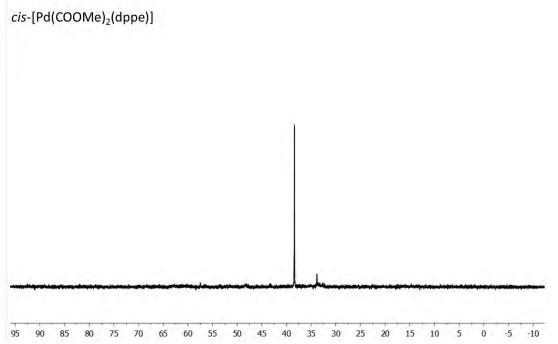


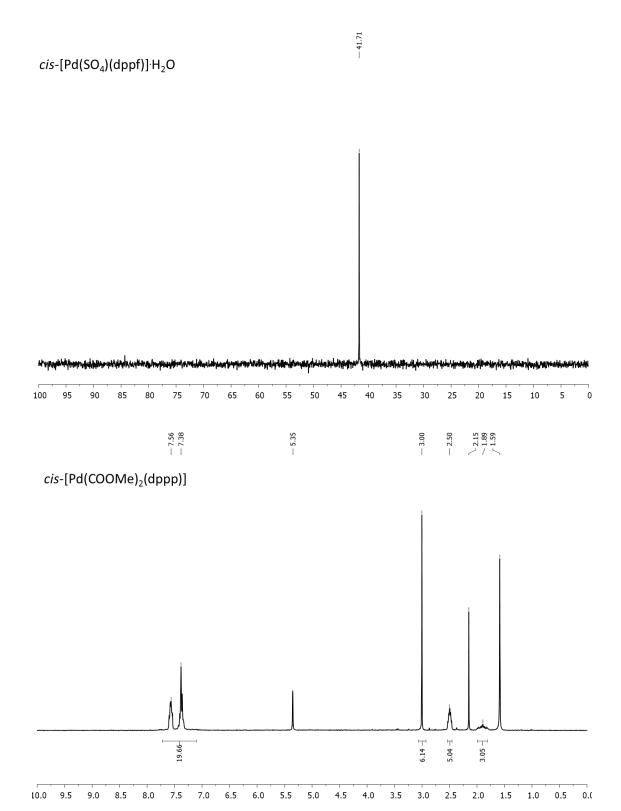

cis-[Pd(OTs)₂(Xantphos)]

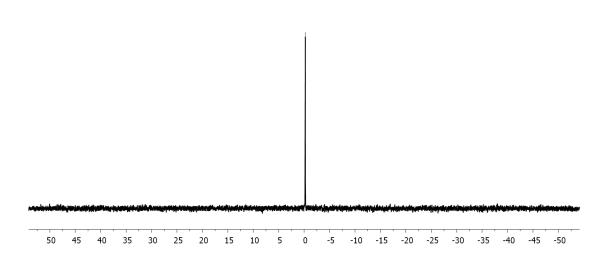


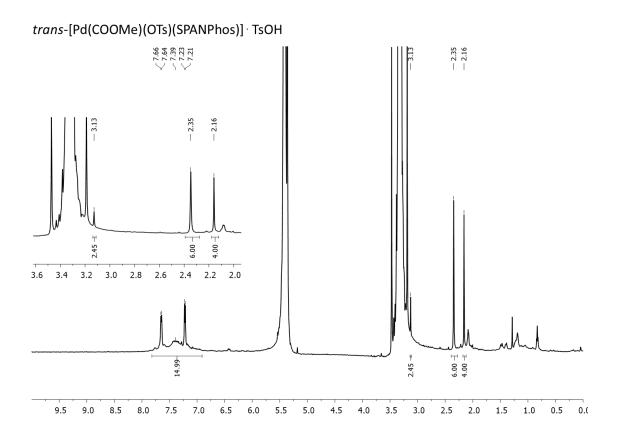


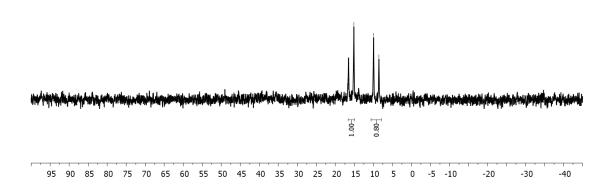

[Pd(OTs)₂(MeO-dppf)]











$\textit{trans}\text{-}[Pd(COOMe)(OTs)(SPANPhos)] \cdot TsOH$

