Influence of structural and electronic properties of organomolybdenum(II)

compounds of the type [CpMo(CO)₃R] and [CpMo(O₂)(O)R]

(R = Cl, CH₃, CF₃) on the catalytic oxidation of olefins

Simone A. Hauser,^a[‡] Robert M. Reich,^a[‡] János Mink,^{b,c} Alexander Pöthig,^d Mirza Cokoja^d and Fritz E. Kühn^{a,e*}

- *a* Molecular Catalysis, Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching bei München, Germany. Tel: +49 89 289 13096; Fax: + 49 89 289 13473. Corresponding author: E-mail: fritz.kuehn@ch.tum.de
- *b* Hungarian Academy of Sciences, Chemical Research Center, Pusztszeri u. 59-67, 1025 Budapest, Hungary
- c Faculty of Information Technology, University of Pannonia, Egyetem u. 10 8200 Veszprém, Hungary
- *d* Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Straße 1, D-85747 Garching bei München, Germany
- *e* Chair of Inorganic Chemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching bei München, Germany
- These authors contributed equally to this work.

Supporting Information

Table of Contents

S1. X-Ray single crystallography

Table S.1.Crystallographic data for compounds 3 and 6.

S2. Computational results - Visualization, coordinates and energies Figure S2.1.LUMOs of the compounds [CpMo(CO)₃R] Table S2.1.Summary of computational results

S2.2 Calculated coordinates for [CpMo(CO)₃Cl] (1)

S2.2 Calculated coordinates for [CpMo(CO)₃CH₃] (2)

S2.2 Calculated coordinates for $[CpMo(CO)_3CF_3]$ (3)

S3. Experimental and calculated fundamental frequencies and force constants

Table S3.1. Experimental and calculated fundamental frequencies for $[CpMo(CO)_3CH_3]$ and $[CpMo(CO)_3CD_3]$.

Table S3.2. Calculated force constants for $[CpMo(CO)_3CH_3]$ and $[CpMo(CO)_3CD_3]$. Table S 3.3 IR and Raman frequencies assigned to the spectroscopic modes of vibration for the complexes 1 - 3 and 2a.

<u>S1. X-Ray single crystallography</u>

Data were collected on an X-ray single crystal diffractometer equipped with a CCD detector (APEX II, κ -CCD), a fine-focused sealed tube with MoK_a radiation ($\lambda = 0.71073$ Å) and a graphite monochromator, by using the APEX2 software package. [1] The measurements were performed on single crystals coated with perfluorinated ether. The crystals were fixed on the top of a glass fiber and transferred to the diffractometer. Crystals were frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT. [2] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS. [2] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps [3], and were refined against all data using the APEX 2 software [1] in conjunction with SHELXL-97 [5] and SHELXLE [6]. Methyl hydrogen atoms were refined as part of rigid rotating groups, with a C–H distance of 0.98 Å and $U_{iso(H)} = 1.5 \cdot U_{eq(C)}$. Other H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C-H distances of 0.99 and 0.95 Å, respectively, and $U_{iso(H)} = 1.2 \cdot U_{eq(C)}$. If not mentioned otherwise, non-hydrogen atoms were refined with anisotropic displacement parameters. Fullmatrix least-squares refinements were carried out by minimizing $\Sigma w (F_0^2 - F_c^2)^2$ with SHELXL-97 [5] weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for *Crystallography.* [4] Images of the crystal structures were generated by PLATON. [7]

References:

- [1] APEX suite of crystallographic software. APEX 2 Version 2008.4. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [2] SAINT, Version 7.56a and SADABS Version 2008/1. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [3] Sheldrick, G. M. "SHELXS-97", Program for Crystal Structure Solution, Göttingen, (1997).
- International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199), Wilson, A. J. C., Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
- [5] Sheldrick, G. M. "SHELXL-97", University of Göttingen, Göttingen, Germany, (1997).
- [6] Huebschle, C. B., Sheldrick, G. M. & Dittrich, B. "SHELXLE", J. Appl. Cryst. 2011, 44, 1281-1284.
- [7] Spek, A. L. "PLATON", A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, (2010).

	3	6
CCDC	1030682	1030683
formula	$C_9H_5F_3MoO_3$	$C_6H_5F_3MoO_3$
fw	314.07	278.04
colour/habit	clearlight yellow needle	Intense yellow fragment
Cryst dimensions (mm ³)	$0.07 \times 0.11 \times 0.55$	$0.08 \times 0.09 \times 0.34$
crystsyst	triclinic	monoclinic
spacegroup	P 1	C 2/c
<i>a</i> , Å	6.4530(2)	20.5911(3)
b, Å	6.5440(2)	6.9325(1)
<i>c</i> , Å	6.7851(2)	12.3919(2)
a, deg	107.752(1)	90
β , deg	97.132(1)	117.372(1)
γ, deg	107.192(1)	90
<i>V</i> , Å ³	253.356(14)	1570.87(4)
Ζ	1	8
<i>T</i> , K	123(2)	123(2)
D_{calcd} , g cm ⁻³	2.059	2.351
μ , mm ⁻¹	1.326	1.693
<i>F</i> (000)	152	1072
θ range, deg	3.24 - 25.37	2.2 - 25.4
Index ranges (h, k, l)	±7, ±7, 0–8	±24, ±8,±14
no. of rflns collected	910	8754
no. of indep rflns/ $R_{\rm int}$	910/0.0224	1447/0.0318
no. of obsd rflns $(I \ge 2\sigma(I))$	905	1266
no. of data/restraints/params	910/3/145	1447/0/118
R1/wR2 $(I \ge 2\sigma(I))^a$	0.0147/0.0381	0.0194/0.0431
R1/wR2 (all data) ^a	0.0147/0.0381	0.0247/0.0448
GOF (on F^2) ^a	1.111	1.043
Largest diff peak and hole (e Å-3)	+0.468/-0.289	+0.595/-0.301

 Table S.1.Crystallographic data for compounds 3 and 6.

^a $\overline{\text{R1} = \sum(||F_o| - |F_c||)/\sum|F_o|}; \text{ wR2} = \{\sum [w(F_o^2 - F_c^2)^2]/\sum [w(F_o^2)^2]\}^{1/2}; \text{ GOF} = \{\sum [w(F_o^2 - F_c^2)^2]/(n-p)^{1/2}\}^{1/2}\}$

Figure S2.1.LUMOs of the compounds [CpMo(CO)₃R] with R = Cl(1), $CH_3(2)$ and $CF_3(3)$ (from left to right) in gas phase (B3LYP/6-31+G**(d,p) level of theory.

Table S2.1.Summary of computational results

		compounds	
	1	2	3
Mulliken charge on Mo	1.025	1.702	1.891
HOMO-LUMO-gap [eV]	3.6635	4.4782	4.3740
Sum of electronic and thermal Enthalpies [eV]	-28897.4	-17458.7	-25561.2
Sum of electronic and thermal Free Energies [eV]	-28898.9	-17460.2	-25562.9
Mo-Ligand-Polarity	0.789	1.616	1.771

S2.2 Calculated coordinates for [CpMo(CO)₃Cl] (1)

С	-1.98799900	1.05031000	0.71919000
Н	-1.98508600	1.92502200	1.35501300
С	-1.98771000	1.05159400	-0.71694400
С	-2.06754900	-0.30715800	1.15686900
Н	-1.98474000	1.92741900	-1.35122900
С	-2.06703400	-0.30513400	-1.15698800
Н	-2.10110700	-0.65004000	2.18174600
С	-2.12405500	-1.13024100	-0.00077400
Н	-2.09986800	-0.64629600	-2.18246100
Н	-2.13743400	-2.21087100	-0.00172400
0	1.77326100	-0.05259700	-2.63421800
0	1.25133800	2.97414800	0.00328700
0	1.77463300	-0.06037000	2.63328300
С	1.16564500	-0.01750400	1.65715000
С	0.79357700	1.91196600	0.00223500
С	1.16480900	-0.01283900	-1.65759400
Мо	0.00132100	0.06871700	0.00014700
Cl	0.85416300	-2.32745600	-0.00266000

S2.3 Calculated coordinates for [CpMo(CO)₃CH₃] (2)

С	-1.82019783	-0.71713523	1.25051445
Н	-1.68775007	-1.35336194	2.11480344
С	-1.82030749	0.71630747	1.25077626
С	-2.07475634	-1.15596256	-0.08195241
Н	-1.68796713	1.35224152	2.11529403
С	-2.07494141	1.15560462	-0.08152904
Н	-2.15552611	-2.18289472	-0.41142726
С	-2.23331364	-0.00003801	-0.89774864
Н	-2.15579313	2.18265678	-0.41061061
Н	-2.43308789	0.00014462	-1.96024613
0	1.76516347	2.55224243	-0.68997555
0	1.89313294	0.00001597	2.52688384
0	1.76620962	-2.55153250	-0.69039205
С	1.16093503	-1.59677189	-0.43760916
С	1.21573630	-0.00000203	1.58706085
С	1.16031965	1.59716295	-0.43734229
Мо	0.03279605	-0.00003560	-0.03279794
С	0.45995179	0.00019976	-2.33987667
Н	-0.00689862	-0.89233949	-2.76219103
Н	-0.00705368	0.89273007	-2.76204857
Н	1.52003777	0.00032076	-2.59195059

S2.4 Calculated coordinates for [CpMo(CO)₃CF₃] (3)

С	2.10216800	-1.37084900	-0.71527100
Н	2.90086600	-1.01419600	-1.35121600
С	2.10117500	-1.36991600	0.72018900
С	0.88852200	-1.97754700	-1.15390000
Н	2.89906300	-1.01259500	1.35677400
С	0.88686900	-1.97602300	1.15786000
Н	0.58835200	-2.14202300	-2.17967100
С	0.14523900	-2.35034700	0.00168700
Н	0.58508000	-2.13921900	2.18336400
Н	-0.82615200	-2.82405600	0.00131900
0	-0.47600200	1.58099100	2.64711600
0	2.36994600	2.52566200	-0.00217300
0	-0.47411800	1.57210200	-2.65203800
С	-0.19743600	1.04759300	-1.66325000
С	1.64175200	1.62863600	-0.00125700
С	-0.19889300	1.05292500	1.66036400
Мо	0.37604900	0.05731300	0.00023700
С	-1.89849100	-0.13691100	-0.00011400
F	-2.36409900	-0.84309200	1.08911800
F	-2.36384100	-0.84526800	-1.08793700
F	-2.61931600	1.02275400	-0.00136000

S3. Experimental and calculated fundamental frequencies and force constants

	[CpMo(Co	D) ₃ CH ₃]	[CpMo(C	CO) ₃ CD ₃]	Potential Energy Distribution ^d	Description
	Exper.	Calcd.	Exper.	Calcd.	(%)	of mode
A'1	2012ª	2010	2010	2004	$83 v_s CO + 10 v_s MoC$	CO sym. stretching
2	1903	1890	1900	1890	$81v_aCO + 11v_aMoC$	CO asym. stretching
3	598	592	602	592	55 β_s MoCO + 25 β_a MoCO ^c + 8 δ_s CMoC	MoCO bending
4	562	562	562	562	$61 \ \beta_a MoCO + 21 \ \beta_s MoCO + \nu_s MoC$	MoCO bending
5	502	503	498	503	$47 v_s MoC + 14 \gamma_a MoCO + 13 v_a MoC$	MoC stretching
6	485	484	489	484	$48\gamma_a MoCO + 15\nu_s MoC + 10\nu MoCp$	MoCO bending
7	452	450	450	447	53 $v_aMoC + 22 \gamma_aMoCO + 12 \nu MoCp$	MoC stretching
8	406	408	392	388	70 vMo-Me + 17 v_a MoC+ 9 v_s MoC	Mo-Me stretching
9	335	335	333	333	83 vMoCp + 10 v_sMoC +5 vMo-Me	Mo-Cp stretching
10	131 ^b	145	130	139	61 δ_s CpMoMe + 13 δ CMoCp + 10 β MoCO	CpMoMe deformation
11	107	110	104	108	43 δ_{s} MoC ₃ + 32 δ CMoCp	MoC ₃ sym. deformation
12	90	99	90	99	41 δ_a CMoC + 32 δ_a CMoCp + 16 δ CpMoMe	CMoC deformation
13	~60	66	~60	66	57 δCMoCp + 26 δCpMoMe	CMoCp deformation
A''14	1920	1911	1907	1900	92 $v_a CO + 8 v_a MoC$	CO asym. stretching
15	562	560	562	560	$87 \ \beta_a MoCO + 6 \ \delta_a CMoCp$	MoCO deformation
16	502	508	498	508	$72 \nu_a MoC + 11 \gamma_a MoCO + 6 \nu_a CO$	MoC stretching
17	465	463	470	463	$61\gamma_a MoCO + 19\delta_a CMoC + 9\delta_s MoCO$	MoCO deformation
18	438	432	429	432	$85\gamma_a MoCO + 5\nu_a CO + 4\delta_a CMoC$	MoCO deformation
19	130	144	130	136	$\delta_a CMoMe + 43 \ \delta_a CMoC$	CMoMe deformation
20	-	120	~120	120	91 δ CMoCp + 5 β_a MoCO	CMoCp deformation
21	107	104	90	104	76 $\delta_a CMoC + 21 \gamma_a MoCO$	CMoC deformation

Table S3.1. Experimental and calculated fundamental frequencies for [CpMo(CO)₃CH₃] and [CpMo(CO)₃CD₃].

^aAveraged IR and Raman frequencies were used as fundamentals when the wavenumbers were slightly different or split due to the solid-state effects.

^bExperimental frequencies below 150 cm⁻¹ were assigned on the basis of normal coordinate calculations.

^c The β (MoCO) are the linear bendings of Mo-C-O groups in the plane of CMoCp, the notation of γ (MoCO) requests the linear bendings perpendicular to the plane of CMoCp.

^dPotential Energy Distributions (PED) were taken from the result of [CpMo(CO)₃CH₃] calculations.

		Numerical values of force	TT. St.	
Force constants	Groups involved and descriptions	constants	Omts	
K ₁ (C'O)	C'O opposite to CH ₃ /CD ₃	13.969	a	
$K_2(CO)$	CO close to CH ₃ /CD ₃	14.396	a	
F _s (CO,CO)	Interaction between CO, CO groups	0.555	а	
$F_l(C'O,CO)$	Interaction between C'O,CO groups	0.278	а	
K(MoC)	Mo-CO	3.108	а	
F(MoC,MoC)	Mo-CO	0.011	а	
K(Mo-Me)	Mo-CH ₃ , Mo-CD ₃	1.527	а	
K(Mo-Cp)	Мо-Ср	3.110	а	
H(MoCO)	MoCO linear bending (in plane)	0.865	b	
h(MoCO,MoCO)	MoCO, MoCO interaction	0.008	b	
H'(MoCO)	MoCO linear bending (out of plane)	0.534	b	
h'(MoCO,MoCO)	MoCO, MoCO interaction	0	b	
H(CMoMe)	skeletal bending	(0.55) ^c	b	
H(CMoC)	skeletal bending	(0.62)	b	
H(CMoCp)	skeletal bending	(0.48)	b	
H(CpMoMe)	skeletal bending	(0.50)	b	
F(MoMe,MoC')	stretch-stretch interaction	(0.10)	а	
F(MoMe,MoC)	stretch-stretch interaction	(0.05)	а	

Table S3.2. Calculated force constants for [CpMo(CO)₃CH₃] and [CpMo(CO)₃CD₃].

Units of force constants are: a, 10² N m⁻¹; b, 10⁻¹⁸ N m rad⁻²; c, The constrained values are listed in brackets.

	1	2	2	2	a		3	
IR	Raman	IR	Raman	IR	Raman	IR	Raman	Assignment
3123m	3127m	3113m	3123m	3113m	3123m	3126m	1303m	v _s (CH), Cp
3118m								v _a (CH), Cp
3103m	3111w		3100w		3102w		3108w	v _a (CH), Cp
		2981m	2982m	2233m	2236m			v _a (CH ₃ /CD ₃)
		2902m	2905m	2116m	2114m			v _s (CH ₃ /CD ₃)
		2020w,sh	2019m	2018w,sh	2018m			v _s (C≡O)
						2060w,sh	2056m	v _s (C≡O)
2040vs	2041vs	2006s	2003s	2004s	2002s	2048s	2042s	v _s (C≡O)
	1974w			1948w,sh	1945w,sh	1980w,sh	1977s	v _a (C≡O)
1969vs	1960s	1920m,sh	1921s,sh	1920m,sh	1920s,sh	1963s	1962vs	v _a (C≡O)
	1949vs							v _a (C≡O)
1932vs	1930m	1903vs	1900vs	1901vs	1889vs	1934vs	1932s	v _a (C≡O)
1924s,sh						1916m,sh		v _a (C≡O)
1421m	1422vw	1423m	1425m	1423m	1421m,b	1430m	1427m	v _a (CC), Cp
		1423m	1420m	1062m	1061m			$\delta_a(CH_3/CD_3)$
1354w	1355vw	1354w	1352w	1353w	1352w		1356w	$v_a(CC), Cp$
	1100	1161m	883m	881s	1105		1100	$\delta_{\rm s}(\rm CH_3/\rm CD_3)$
1110vw	1109s	1109vw	110/s	1109vw	110/s	1113vw	1109s	$v_s(CC), Cp$
1064m	1061m	1060m	1061m	1062m	1061m	1050	1069m	β(CH), Cp
						1050s	1057m	$V_a(CF_3)$
1014		1011	1011	1012	1000	1043s		$V_a(CF_3)$
1014m	1007	1011m	1011vw	1012m	1009vw	1012s	1005	$\beta(CH), Cp$
1005m	100/vw				1003vw	1004s	1005vw	$\beta(CH), Cp$
8222	016	025-	022	<u>822</u>	<u>821</u>	982S	9/8VW	$V_{s}(CF_{3})$
8225	810VW	8258	822VW	8225	821VW	831m	82/m	$\gamma(CH), CP$
		612	609	100.00		093111	092111	$\rho_{s}(C\Gamma_{3})$
		015w	0087W	40005	475s			$p(CH_3/CD_3)$
601w	- 600vav	613w	6083737	614wsh	4735	613w		$\beta(CH_3/CD_3)$
561s	~000VW	5878	584vw	597s	596w	573s	571w	$\delta_{\rm s}({\rm MoCO})$
524s	~520vw	562vs	562m	561vs	563vw	5/6vs	5/1w	$\beta_{s}(MoCO)$
3243		755w	758vw	548s sh	549vw	54073		$\rho_a(WOCO)$
		755₩	7507	5465,511	5-77 W	525w	521w	$\delta(CE_2)$
						512w	5210	$\delta_a(CF_2)$
471s	464w	502w.sh		498m.sh	498w.sh	4798	477w	v _a (MoC)
471s	464w	489vs	482m	488vs	490w.sh	4795	477w	γ _o (MoCO)
		465w.sh		463w.sh	476ms	455ms	458ms	β _a (MoCO)
432w	428vw							β _a (MoCO)
432w	428vw	451s	453m	448s	451s	430vs	432m	v _a (MoC)
415m	420vw	437m	438vs	429ms	429s	404m	402m	γ(MoCO)
		405w	408ms	392m	391m			v(MoC),
								CH ₃ /CD ₃
	383w,sh							v _a (MoCp),
								tilt
	371m	355w	355s	353m	352vs	366w	361w,sh	v _a (MoCp),
								tilt
<u>361s^a</u>	350w,sh	335w	334vs	334w	333vs			v _s (MoCp)
337vw ^a	338ms					352vw	350vs	v _s (MoCp)
281vs ^a	278w						2.10	v(MoCl)
						251s	249s	$v(MoC), CF_3$
			172	125- 1	1(0	234m	233m	$\rho(CF_3)$
			1/38	125vw,sh	1605			$\tau(CH_3/CD_3)$
		120	160m		148m	127	127	$\tau(CH_3/CD_3)$
		150W,Sh	133W	104	130W,Sh	13/W	13/W,m	ο(CpMoK)
		10/W		104W		119W	119W	$\delta_{\rm s}({\rm CMoC})$
			00m ch		00m ch	1000W	+	$\delta_{\rm s}(\rm CMaC)$
		60222	70w,811		20W,SII	60000	+	$\delta(CM_0Cp)$
	l	001W		1		0000	1	o(cmocp)

Table S 3.3 IR and Raman frequencies assigned to the spectroscopic modes of vibration for the complexes 1-3and 2a [CpMo(CO)₂CD₂].

a Far infrared data taken from ref. 25 b Notation of fundamental modes: v – stretching; δ – bending or deformation; ρ – rocking; β – in plane, γ – out of plane deformation; τ – torsion; subscript 's' symmetric, subscript 'a' anti-symmetric.