SUPPORTING INFORMATION

Copper Oxide as Efficient Catalyst for Oxidative Dehydrogenation of Alcohols with Air

Raju Poreddy, Christian Engelbrekt and Anders Riisager*

Inductively coupled plasma mass spectrometry (ICP-MS)

SI Fig. 1. ICP-MS of dissolved CAPS-CuO (white) and filtered solution after reaction for 24 h with CAPS-CuO catalyst (black).

Transmission electron microscopy

SI Fig. 2. TEM micrographs of as-received commercial CuO (com-CuO).

SI Table 1	. Observed	lattice spacin	gs derived fron	the FFTs sh	own in Fig. 3	compared with	h calculated values.

	CAPS-CuO					MES-CuO			
	(hkl)	\mathbf{d}_{obs}	\mathbf{d}_{cal}		(hkl)	\mathbf{d}_{obs}	\mathbf{d}_{cal}		
3b	(020)	1.70 Å	1.71 Å	Fig. 3f	(311)	1.33 Å	1.30 Å		
	(200)	2.31 Å	2.31 Å		(311)	1.42 Å	1.41 Å		
Fig	(110)	2.73 Å	2.75 Å		(022)	1.45 Å	1.42 Å		
	(110)	2.78 Å	2.75 Å		(200)	2.33	2.31 Å		
	(020)	1.72 Å	1.71 Å	Fig. 3h	(1 1 1)	2.35	2.32 Å		
p£ .	(200)	2.33 Å	2.31 Å		(111)	2.56 Å	2.52 Å		
Fig.	(110)	2.73 Å	2.75 Å		(311)	1.33 Å	1.30 Å		
	(110)	2.80 Å	2.75 Å		(200)	2.30 Å	2.31 Å		

X-ray photoelectron spectroscopy (XPS)

SI Fig. 3. XPS at the Cu 2p transition of CAPS-CuO (top) and MES-CuO (bottom).

SI Fig. 4. XPS at the O1s transition of CAPS-CuO (top) and com-CuO (bottom).

X-ray powder diffraction (XRD)

SI Fig. 5. XRD patterns of CAPS-CuO (a) after 24 h reaction in different atmospheres and (b) at different times during reaction. Inset in (b) shows a magnified view of the predominant Cu_2O peaks at 36.5° and 42.4°, respectively. The XRD patterns in (c) show the structural changes of $CuCl_2$ when used as catalyst. Reference patterns in (d) support that both dehydration and significant reduction to CuCl occurs.

Rietveld refinement parameters

The crystal structures of fresh and spent CAPS-CuO and MES-CuO were refined by WINPOW (a local variation of LHMP). The Rietveld refinement for anatacamite was carried out by refining in a 2θ range from 20° (fresh) and 10° (spent) to 100° in steps of 0.02°. No atomic coordinates were refined. A Voigt profile function and a Chebyshev background polynomial were applied in all refinements. Crystallographic data and refinement summary are given in SI Table 2 and the refined patterns are shown in Fig. 1.

SI Table 2 Cr	vstallographic	data and refinement	summary for the as-s	vnthesized and s	spent CuO catalysts
51 1 abic 2. Ci	ystanographic	data and remement	summary for the as-s	ynthesized and a	spent CuO catalysis.

Sample	CAPS-CuO (Fresh)	APS-CuO MES-CuO CAPS-CuO (Fresh) (Spent)		MES-CuO (Spent)				
Formula	CuO	CuO	CuO	Cu ₂ O	Cu	CuO	Cu ₂ O	Cu
Formula mass (g/mol)	79.55	79.55	79.55	143.1	63.55	79.55	143.1	63.55
Crystal system	Monoclinic	Monoclinic	Monoclinic	Cubic	Cubic	Monoclinic	Cubic	Cubic
Space group	C 1 c 1	C 1 c 1	C 1 c 1	P n -3 m Z	F m -3 m	C 1 c 1	P n -3 m Z	F m -3 m
<i>a</i> (Å)	4.6817(2)	4.6833(2)	4.6930(4)	4.2596(3)	3.5938(1)	4.730(2)	4.2631(2)	3.6151(1)
b (Å)	3.4175(2)	3.4170(2)	3.4260(3)	4.2596(3)	3.5938(1)	3.415(1)	4.2631(2)	3.6151(1)
c (Å)	5.1317(3)	5.1302(3)	5.1240(5)	4.2596(3)	3.5938(1)	5.022(2)	4.2631(2)	3.6151(1)
a (°)	90	90	90	90	90	90	90	90
β (°)	99.266(2)	99.275(2)	99.332(5)	90	90	99.39(2)	90	90
γ (°)	90	90	90	90	90	90	90	90
$V(\text{\AA}^3)$	81.04(1)	81.03(1)	81.29(2)	77.29(2)	46.42(5)	80.04(9)	77.48(1)	47.245(5)
Ζ	4	4	4	2	4	4	2	4
ρ (g/cm ³)	6.519	6.520	6.498	6.148	9.092	6.600	6.133	8.933
Voigt particle size (Å)	175(0)	188(1)	-	-	-	-	-	-
Composition (wt%)			77.6(3)	21.1(1)	1.29(4)	6.8(1)	77.6(3)	15.60(8)
No. of parameters	12	12		27			24	
R _{wp} (%)	2.49	2.81		4.93			5.50	
χ^2	0.35	0.48		2.30			2.82	
R_p (%)	1.80	2.08	3.50			4.14		
No. of Bragg reflections	46	46	46	12	5	42	12	5
R_{B} (%)	1.25	1.51	2.49	1.54	0.83	1.54	1.70	1.79

XRD of spent and regenerated CAPS-CuO

SI Fig. 6. XRD of CAPS-CuO before and after the thermal treatment.

Thermogravimetric analysis (TGA)

SI Fig. 7. TGA of fresh and spent CAPS-CuO with a heating rate of 10 °C/min.

Attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR)

SI Fig. 8. ATR-FTIR spectra of fresh CAPS-CuO (black), spent CAPS-CuO after fourth reaction run without regeneration (red) and the reaction filtrate (blue).