Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

The preparation of Fe/wood-based activated carbon catalyst for phenol hydroxylation from Fe²⁺ and Fe³⁺ precursors†

Ruiguang Yang, Guiying Li*, and Changwei Hu*

Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.

Electronic Supplementary Information (ESI)

Contents

Fig. S1 DR UV-vis spectra of catalysts: (a) WAC, (b) Fe/WAC/0.89, (c) Fe/WAC/2.76, (d) Fe/WAC/4.82, (e) Fe/WAC/6.55.

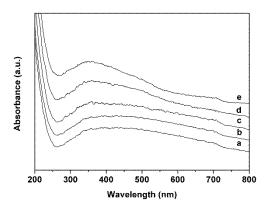

Fig. S2 FTIR spectra of catalysts.

Fig. S3 HRTEM images of the catalysts: (A, C) Fe/WAC/0.89, (B, D) Fe/WAC/6.55. The scale bars in image (A-D) were 200, 200, 2 and 2 nm, respectively.

Fig. S4 The decomposition of H_2O_2 in blank experiment.

Table S1 Effect of molar ratio of Fe³⁺ to Fe²⁺ for phenol hydroxylation

Table S2 Recycling of Fe/WAC/0.89 for phenol hydroxylation

Fig. S1 DR UV-vis spectra of catalysts: (a) WAC, (b) Fe/WAC/0.89, (c) Fe/WAC/2.76, (d) Fe/WAC/4.82, (e) Fe/WAC/6.55.

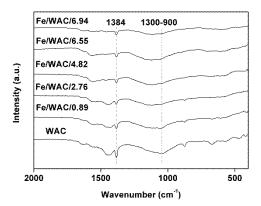
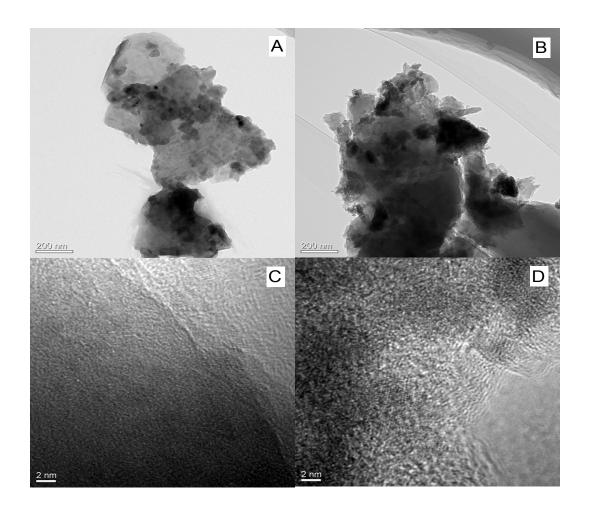



Fig. S2 FTIR spectra of catalysts.

Fig. S3 HRTEM images of the catalysts: (A, C) Fe/WAC/0.89, (B, D) Fe/WAC/6.55. The scale bars in image (A-D) were 200, 200, 2 and 2 nm, respectively.

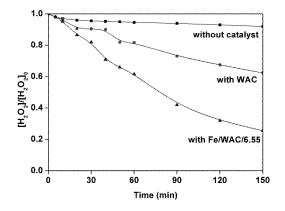


Fig. S4 The decomposition of $H_2\mathrm{O}_2$ in blank experiment.

Table S1 Effect of molar ratio of Fe³⁺ to Fe²⁺ for phenol hydroxylation ^a

Fe^{3+}/Fe^{2+}	X_{Ph} (%)	S_{DHB} (%)	<i>Y</i> _{DHB} (%)	Yield of product (%)				
				CAT	HQ	BQ	Others	
0/1	22.9	49.6	11.4	3.4	8.0	1.9	9.6	
1/1	50.1	79.8	40.0	21.7	18.3	1.8	8.3	
2/1	51.1	80.6	41.2	22.0	19.2	1.7	8.2	
3/1	50.6	79.6	40.3	21.8	18.5	1.7	8.6	
4/1	51.5	79.8	41.1	22.1	19.0	1.8	8.6	
1/0	23.7	52.8	12.5	3.9	8.6	2.1	9.1	

 $^{^{\}rm a}$ Reaction condition: 0.05 g of catalyst, 0.48 g of phenol (5 mmol), 0.50 g of 30 wt% aqueous $\rm H_2O_2$ (5 mmol), 10 ml water, reaction temperature 313 K, reaction time 40 min.

Table S2 Recycling of Fe/WAC/0.89 for phenol hydroxylation ^a

Catalyst	<i>X</i> _{Ph} (%)	$S_{ m DHB}$ (%)	Y _{DHB} (%)	Yield of product (%) CAT HQ BQ Others				Fe content
				CAT	HQ	BQ	Others	(wt%)
BR b	25.5	67.5	17.2	9.3	7.9	3.3	5.0	0.89
AR1 c	23.0	66.1	15.2	8.4	6.8	3.4	4.4	0.71
AR2	10.8	46.3	5.0	3.6	1.4	2.0	3.8	0.65
AR3	5.0	46.0	2.3	1.8	0.5	1.1	0.3	0.51

^a Reaction condition: 0.05 g of Fe/WAC/0.89, 0.48 g of phenol (5 mmol), 0.50 g of 30 wt% aqueous H_2O_2 (5 mmol), 10 ml water, reaction temperature 313 K, reaction time 40 min. ^b BR meant before reaction. ^c AR1 meant after once run, ARN means after N times run.