Supplementary Information

Catalytic asymmetric [3,3]-rearrangements of allylic acetimidates

J. Moritz Bauer,^{*a*} and René Peters^{*a**}

Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany^a

Table of Contents

General Remarks	
General Procedures	
Synthesis of Allylic Alcohols (1)	S8
Synthesis of Amides (6)	S10
Synthesis of <i>N</i> -Imidoylbenzotriazoles (8)	
Synthesis of Allylic Imidates (9)	S14
Activation of [PPFIP-Cl] ₂ by AgNO ₃	
Synthesis of Allylic Amides (10)	
Removal of Amine Protecting Groups (11, 12, 13)	
NMR Spectra of New Compounds	
HPLC Spectra of compounds 10, 11, 13	
References	

General Remarks

All reactions were performed in oven-dried glassware (oven temperature at 150 °C) and unless otherwise indicated under a positive pressure of nitrogen (about 0.2 bar). Liquids were added via syringe and solids were added neat against a nitrogen flow. Solvents were removed by rotary evaporation at a heating bath temperature of 40 °C and 600-10 mbar pressure. Non-volatile compounds were dried in vacuo at ca. 0.1 mbar. Absolution of dichloromethane and THF used for reactions was achieved by a solvent purification system. Chloroform was stored in crown-capped bottles over 4Å molecular sieves and used as purchased. For work-up procedures and column chromatography, distilled technical grade solvents were used. n-Hexane and i-Propanol (HPLCquality) were used as purchased. [PPFOP-Cl]₂,^[1] [PPFIP-Cl]₂,^[2,3] [FBIP-Cl]₂^[4] and [FBIPP-Cl]₂^[5] were prepared according to literature procedures. PGA (Penicillin G Amidase from Escherichia coli) (ammonium sulfate suspension, ≥ 10 units/mg protein) was purchased from Sigma Aldrich. All other laboratory chemicals were used without purification unless otherwise indicated. Yields refer to purified compounds and are calculated in mol% of the used starting material. Except otherwise indicated, reactions were magnetically stirred and monitored by NMR-spectroscopy or thin layer chromatography (TLC) using silica gel plates (silica gel 60 F₂₅₄). Visualization occurred by fluorescence quenching under UV light and/or staining with KMnO₄/NaOH. Purification by column chromatography was performed on silica gel 0.040 - 0.063 mm using a forced flow of eluent at moderate pressure applied with a hand pump. Deactivated silica gel for column chromatography and dry column chromatography was prepared by elution with the corresponding solvent until the eluent shows basic reactivity. NMR-spectra were recorded at 21 °C at 500, 300 or 250 MHz (¹H) and 125 or 75 MHz (13 C). Chemical shifts δ are referred in terms of ppm and coupling constants J are given in Hz. Abbreviations for multiplicities are as follows: s (singulet), d (duplet), t (triplet), q (quartet), m (multiplet), p (pentet), hex (sextet), hep (heptet) and b (broad signal). IR-spectra were recorded by the analytical service of the Universität Stuttgart on a FT-IR spectrometer with an ATR unit and the signals are given by wavenumbers (cm⁻¹). Melting points were measured in open glass capillaries and are uncorrected. Optical rotation was measured at the sodium D line in a 100 mm path cell length and values are given in deg mL g⁻¹ dm⁻¹. The *ee* values were determined by chiral stationary phase HPLC. Mass spectra were obtained from the analytical service of the Universität Stuttgart. Ionization methods are stated in parenthesis. Elemental analysis was performed by the analytical service of the Universität Stuttgart.

General Procedures

General Procedures for the Synthesis of Amides (GP1)

Synthesis via Acid Chlorides (GP1a)^[6]

The corresponding amine (1.1 equiv) was dissolved in dry CH_2Cl_2 (8.0 mL per 1.0 mmol) and cooled to 0 °C. NEt₃ (1.1 equiv.) was added in one portion and then the corresponding acid chloride (1.0 equiv.) was added dropwise. Subsequently, the mixture was stirred at room temperature for 16 h. The pH-value of the mixture was then adjusted to pH = 12 by addition of saturated aqueous Na₂CO₃. The phases were separated and the aqueous phase was extracted with CH_2Cl_2 . The combined organic phases were washed with aqueous HCl (20.0 mL per 1.0 mmol, 1 M) and dried over Na₂SO₄. Removal of solvent under reduced pressure yielded the amide, which was purified by recrystallization if necessary.

Synthesis via Acetic Acid Anhydride (GP1b)^[7]

$$R^{1}_{NH_{2}} \xrightarrow{Ac_{2}O, EtOAc,} R^{1}_{NH_{2}} \xrightarrow{H}$$

The corresponding amine (1.0 equiv.) was dissolved in EtOAc (2.0 mL pro 1.0 mmol) and Ac_2O (1.1 equiv.) was added dropwise. The mixture was stirred at room temperature for 14 h. Subsequently, saturated aqueous NaHCO₃ (20 mL per 1.0 mmol) was added and the phases were separated. The organic phase was washed with aqueous HCl (20 mL per 1.0 mmol, 1M) and dried over Na₂SO₄. Removal of solvent under reduced pressure yielded the amide, which was purified by recrystallization if necessary.

Synthesis via Acids (GP1c)^[8]

$$R^{1}_{NH_{2}} + HO R^{2} \xrightarrow{O \circ C-RT, 14h} HO R^{2} \xrightarrow{R^{2}} HO R^{2}$$

A solution of T3P (1-propanephosphonic anhydride) (1.2 equiv., 50% in THF) was diluted with dry THF (5 mL per 1.0 mmol) and cooled to 0 °C. Subsequently, NEt₃ (2.0 equiv.), the corresponding

amine (1.0 equiv.) and the corresponding acid (1.0 equiv.) were added and the mixture was stirred at room temperature for 14 h. Then H_2O (20 mL per 1.0 mmol) was added and the phases were separated. The aqueous phase was extracted with EtOAc (2 x 20 mL per 1.0 mmol) and the combined organic phases were dried over Na_2SO_4 . Removal of solvent under reduced pressure yielded the amide.

General Procedures for the Synthesis of Allylic Imidates (GP2)

Synthesis of *N*-Imidoylbenzotriazoles (GP2a)^[9]

According to a literature procedure,^[9] to a solution of triphenylphosphine (2.0 equiv.) in dry THF (10.0 mL per 1.0 mmol) was added 1-chloro-1H-benzo[d][1,2,3]triazole (2.0 equiv) and the mixture was stirred at room temperature for 1 h. Subsequently a solution of the corresponding amide (1.0 equiv.) in dry THF (2.0 mL per 1.0 mmol) was added and the mixture was stirred at 75 °C for 20 h. After cooling to room temperature the solvent was removed under reduced pressure and the *N*-imidoylbenzotriazolewas isolated by column chromatography on deactivated silicagel.

Synthesis of Allylic Imidates via N-Imidoylbenzotriazoles (GP2b)

The corresponding allylic alcohol (1.0 equiv.) was dissolved in dry THF (4 mL per 1.0 mmol) and cooled to -70 °C. LHMDS (Lithium bis(trimethylsilyl)amide) (1.0 equiv., 1 M in THF) was added dropwise and the solution was stirred at this temperature for 10 min. Subsequently, a solution of the corresponding *N*-imidoylbenzotriazole (0.5-1.0 equiv.) in dry THF (4 mL per 1.0 mmol) was added and the mixture was stirred at the indicated temperature for the indicated time (monitoring *via* ¹H-NMR). The solvent was removed under reduced pressure and the allylic imidate was isolated by column chromatography on deactivated silicagel.

Synthesis of Allylic Imidates via Oxalyl Chloride (GP2c)^[1,10]

According to a literature procedure,^[1,10] a solution of the corresponding amide (1.5-2.0 equiv.) and 2,4,6-collidine (3.0 equiv.) in dry CH₂Cl₂ (4 mL per 1.0 mmol) was cooled to 0 °C. A solution of oxalyl chloride (1.5-2.0 equiv.) in dry CH₂Cl₂ (1 mL per 1.0 mmol) was added dropwise and the mixture was stirred at 0 °C for 30 min. Subsequently, the solvent was removed under vacuum at room temperature and *n*-hexane (4 mL per 1.0 mmol) was added to the residue. Ultrasonification yielded a suspension, which was stirred at 0 °C for 1 h and then filtered directly into a solution of the corresponding alcoholate [prepared by addition of *n*-BuLi (1.0 equiv., 15% in hexane) to a solution of the corresponding allylic alcohol (1.0 equiv.) in dry THF (1 mL per 0.5 mmol) at 0 °C and stirring of the mixture at 0 °C for 15 min]. The mixture was stirred at room temperature for 14 h, then diluted with Et₂O (2 mL per 1.0 mmol amide) and filtered over silicagel. Removal of solvent under reduced pressure and column chromatography or dry column chromatography of the residue on deactivated silicagel yielded the allylic imidate.

Synthesis of Allylic Imidates *via* PCI₅ (GP2d)^[11]

According to a literature procedure,^[11] to a solution of the corresponding amide (1.0 equiv.) in dry benzene (2 mL per 1.0 mmol) was added PCl₅ (1.0 equiv.) and the mixture was refluxed for 1 h. After cooling to room temperature the solvent was removed under reduced pressure (venting with N₂), the residue was dissolved in dry THF (1.0 mL per 1.0 mmol) and directly added to a solution of the corresponding alcoholate [prepared by addition of *n*-BuLi (1.0 equiv., 15% in hexane) to a solution of the corresponding allylic alcohol (1.0 equiv.) in dry THF (1 mL per 0.5 mmol) at 0 °C and stirring of the mixture at 0 °C for 15 min]. The mixture was stirred at room temperature for 14 h and the solvent removed under reduced pressure. The residue was dissolved in CH₂Cl₂ and washed with H₂O. The organic phase was dried over Na₂SO₄ and the solvent removed under reduced pressure. Column chromatography on deactivated silicagel yielded the allylic imidate.

General Procedures for the Activation of Pre-Catalysts (GP3)

Activation of Mono-Palladacycles (GP3a)

The corresponding palladacycle (1.0 equiv.) and the corresponding silver salt (4.0 equiv) were suspended in dry CH_2Cl_2 (0.5 mL per 5 mg palladacycle) and ultrasonificated for 10 min. The mixture was stirred at room temperature for 14 h and then filtered through CaH_2 /celite (1:1) under N₂. The solvent was removed by a stream of N₂ and then high vacuum was applied. A stock solution was prepared by the addition of a definite amount of the corresponding solvent.

Activation of the Bis-Palladacycle and the Pallada-/Platinacycle (GP3b)

To a solution of AgOTs (4.0 equiv.) in dry MeCN (0.5 mL per 5 mg bis-Palladacyle) was added the corresponding bis-palladacycle (1.0 equiv.). The mixture was stirred at room temperature for 14 h and then filtered through CaH₂/celite (1:1) under N₂. The solvent was removed by a stream of N₂ and then high vacuum was applied. A stock solution was prepared by the addition of a definite amount of the corresponding solvent.

General Procedures for the Rearrangement of Allylic Imidates (GP4)

Non-Enantioselective Rearrangements (GP4a)^[12]

To a solution of the corresponding allylic imidate (1.0 equiv.) in dry CH_2Cl_2 (0.5 mL per 0.1 mmol) was added $PdCl_2(CH_3CN)_2$ (10 mol%) and the mixture was stirred at room temperature for 3 h. Subsequently the solvent was removed under educed pressure and the corresponding allylic amide was isolated by column chromatography on silicagel.

Catalytic Asymmetric Rearrangements (GP4b)

A dry screw-cap vial was charged with the corresponding allylic imidate (1.0 equiv.), then vacuum was applied and the vial was refilled with N₂ (3 times). A stock solution of proton sponge (1,8-bis-(*N*,*N*-dimethylamino)naphthalene, PS) (4X mol%) [only used in the case of mono-palladacycles] in the indicated solvent and a stock solution of the corresponding activated catalyst [prepared according to **GP3**] in the indicated solvent were added. The amount of solvent was reduced by a stream of N₂ if necessary (final concentration: around 150 μ L per 100 μ mol of substrate). The vial was closed by a screw-cap and the mixture was stirred at the indicated temperature for the indicated time. Subsequently, the solvent was removed under reduced pressure and mesitylene (10 μ L per each 50 μ mol of substrate) was added to the crude product as an internal standard followed by CDCl₃ (1 mL) to determine conversion and yield by ¹H-NMR. The crude product was afterwards directly used for silicagel chromatography to isolate the corresponding allylic amide. The purified samples were used to determine the *ee* value by HPLC.

Synthesis of Allylic Alcohols (1)

Commercially available:

The following allylic alcohols used in these investigations are commercially available in sufficiently high isomerical purity:

trans-hex-2-en-1-ol (1c), *cis*-hex-2-en-1-ol ((Z)-1c), *trans*-pent-2-en-1-ol (1b), *trans*-oct-2-en-1-ol (1d), geraniol (1n), cinnamyl alcohol (1l).

Via HWE-reaction:

The following alcohols were prepared according to a literature procedure utilizing the Horner-Wadsworth-Emmons reaction (HWE),^[13] followed by reduction with DIBAL-H:

Trans-5-phenylpent-2-en-1-ol (1a)^[14] and *trans*-4-methylpent-2-en-1-ol (1k).^[15]

Representative Procedure for HWE and DIBAL-H-Reduction: trans-5-Phenylpent-2en-1-ol (1a)^[14]

To a solution of trimethylphosphonoacetate (1.00 equiv., 1.40 mmol, 252.0 mg, 200 μ L) in THF (10 mL) was added MeMgBr (0.86 equiv., 1.20 mmol, 400 μ L of a 3M solution in Et₂O) dropwise at room temperature. This mixture was stirred at room temperature for additional 20 min, then 3-phenylpropionaldehyde (0.97 equiv., 1.32 mmol, 183.1 mg, 180 μ L) was added in one portion and the solution was stirred at room temperature for another 1 h. Subsequently, saturated aqueous NH₄Cl (6.3 mL) was added and the mixture was extracted with Et₂O (2 times 20 mL). The combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Purification by silica gel chromatography (petrol ether/ethyl acetate = 10/1) yielded the intermediate ester as a colorless oil (0.58 mmol, 110.0 mg, 48%).

 $C_{12}H_{14}O_2$, MW: 190.24 g mol⁻¹. ¹H-NMR (300 MHz, CDCl₃): δ = 7.34-7.25 (*m*, 2 H, Ar-*H*), 7.24-7.14 (*m*, 3 H, Ar-*H*), 7.00 (*dt*, *J* = 15.6, 6.8, 1 H, C(=O)CH=CH), 5.85 (*dt*, *J* = 15.6, 1.5, 1 H, C(=O)CH=CH), 3.72 (*s*, 3 H, OCH₃), 2.82-2.73 (*m*, 2 H, CH₂CH₂C₆H₅), 2.59-2.46 (*m*, 2 H, CH₂CH₂C₆H₅). The analytical data are in accordance with the literature.^[14]

To a solution of the ester (1.00 equiv., 2.09 mmol, 398.7 mg) in CH_2Cl_2 (5 mL) at -78 °C was added DIBAL-H (2.63 equiv., 5.50 mmol, 5 mL of a 1.1M solution in cyclohexane) in one portion. After stirring for 15 min at this temperature, the solution was slowly warmed to room temperature and stirred for 1.5 h. Subsequently, the mixture was cooled again to -78 °C and aqueous hydrochloric acid (1M, 28 mL) was added until all solid had dissolved. The mixture was extracted with CH_2Cl_2 (2 times 20 mL), the combined organic phases were dried over MgSO₄ and the solvent removed under reduced pressure. Purification by silica gel chromatography (petrol ether/ethyl acetate = 5/1) yielded the alcohol **1a** as a colorless oil (2.03 mmol, 329.2 mg, 97%).

C₁₁H₁₄O, MW: 162.23 g mol⁻¹. ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.32-7.25$ (*m*, 2 H, Ar-*H*), 7.23-7.14 (*m*, 3 H, Ar-*H*), 5.81-5.61 (*m*, 2 H, C*H*=C*H*), 4.09 (*d*, *J* = 5.0, 2 H, OC*H*₂), 2.75-2.67 (*m*, 2 H, CH₂CH₂C₆H₅), 2.42-2.33 (*m*, 2 H, C*H*₂CH₂C₆H₅), 1.28 (*bs*, 1 H, O*H*). The analytical data are in accordance with the literature.^[14]

trans-3-(4-Nitrophenyl)prop-2-en-1-ol (1m)

Following a literature procedure,^[16] 4-nitrocinnamaldehyde (1.00 equiv., 2.77 mmol, 490.0 mg) was dissolved in EtOH (40 mL) by heating to 50 °C. A solution of NaBH₄ (1.00 equiv., 2.77 mmol, 105.0 mg) in EtOH (11 mL) was added in one portion and the mixture was stirred at room temperature

for 3 h. Subsequently, the mixture was filtered through celite and concentrated aqueous HCl was added until the solution turned from orange to yellow. Then the solvent was removed under reduced pressure, the residue was dissolved in CHCl₃ (50 mL) and washed with H₂O (50 mL). The phases were separated, the organic phase was dried over MgSO₄. Removal of solvent under reduced pressure and washing of the residue with Et₂O yielded the alcohol **1m** as a yellow solid (2.42 mmol, 434.2 mg, 88%).

C₉**H**₇**NO**₃, **MW**: 179.17 g mol⁻¹. ¹**H-NMR (300 MHz, CDCl**₃): $\delta = 8.22-8.16$ (*m*, 2 H, *m*-C₆*H*₄NO₂), 7.55-7.48 (*m*, 2 H, *o*-C₆*H*₄NO₂), 6.72 (*bd*, *J* = 16.1, 1 H, CH=CHC₆H₄NO₂), 6.54 (*dt*, *J* = 16.1, 5.0, 1 H, CH=CHC₆H₄NO₂), 4.44-4.37 (*m*, 2 H, OC*H*₂), 1.55 (*t*, *J* = 5.7, 1 H, OH). The analytical data are in accordance with the literature.^[16]

Synthesis of Amides (6)

N-(4-Methoxyphenyl)acetamide (6a)

According to **GP1a**, *p*-anisidine (55.0 mml, 6.77 g) was reacted with Ac₂O (57.7 mmol, 1.84 g. 1.70 mL). After recrystallization from EtOH/H₂O (1/1) the amide **6a** was obtained as a grey-white solid (38.3 mmol, 6.32 g, 70%).

C₉**H**₁₁**NO**₂, **MW**: 165.19 g mol⁻¹. ¹**H-NMR (300 MHz, CDCl₃):** δ = 7.42-7.35 (*m*, 2 H, *o*-C₆*H*₄OMe), 7.04 (*bs*, 1 H, N*H*), 6.89-6.81 (*m*, 2 H, *m*-C₆*H*₄OMe), 3.79 (*s*, 3 H, OC*H*₃), 2.14 (*s*, 3 H, C(=O)C*H*₃). The analytical data are in accordance with the literature.^[17]

N-(4-Nitrophenyl)acetamide (6e)

According to **GP1a**, 4-nitroaniline (16.2 mmol, 2.24 g) was reacted with Ac_2O (17.1 mmol. 1.75 g, 1.62 mL). After recrystallization from EtOH/H₂O (1/1) the amide **6e** was obtained as a yellow solid (14.0 mmol, 2.53 g, 86%).

C₈**H**₈**N**₂**O**₃, **MW**: 180.16 g mol⁻¹. ¹**H**-**NMR** (**300 MHz**, **DMSO**-*d*₆): δ = 10.56 (*bs*, 1 H, N*H*), 8.25-8.17 (*m*, 2 H, *m*-C₆*H*₄NO₂), 7.86-7.79 (*m*, 2 H, *o*-C₆*H*₄NO₂), 2.12 (*s*, 3 H, C(=O)C*H*₃). The analytical data are in accordance with the literature.^[18]

N-(4-Nitrophenyl)-2-phenylacetamide (6f)

According to **GP1c**, 4-nitroaniline (20.0 mmol, 2.76 g) was reacted with phenylacetic acid (20.0 mmol, 2.73 g). The amide **6f** was obtained as a yellow solid (19.9 mmol, 5.09 g, 99%).

 $C_{14}H_{12}N_2O_3$, MW: 256.26 g mol⁻¹. ¹H-NMR (300 MHz, CDCl₃): $\delta = 8.20-8.13$ (*m*, 2 H, *m*-C₆*H*₄NO₂), 7.64-7.57 (*m*, 2 H, *o*-C₆*H*₄NO₂), 7.47-7.31 (*m*, 6 H, C₆*H*₅ & N*H*), 3.80 (*s*, 2 H, C(=O)C*H*₂). The analytical data are in accordance with the literature.^[19]

N-Phenyl-2-phenylacetamide (6g)

According to **GP1b**, aniline (17.5 mmol, 1.63 g, 1.60 mL) was reacted with phenylacetyl chloride (17.0 mmol, 2.63 g, 2.25 mL). The amide **6g** was obtained as a yellow solid (16.2 mmol, 3.43 g, 95%).

C₁₄H₁₃NO, MW: 211.26 g mol⁻¹. ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.47-7.26$ (*m*, 9 H, CH₂C₆H₅ & *o*- & *m*-C₆H₅), 7.19-7.06 (*m*, 2 H, *p*-C₆H₅ & NH), 3.77 (*s*, 2 H, C(=O)CH₂). The analytical data are in accordance with the literature.^[20]

N-(4-Methoxyphenyl)-2-phenylacetamide (6h)

According to **GP1b**, *p*-anisidine (16.2 mmol, 2.00 g) was reacted with phenylacetyl chloride (14.8 mmol, 2.28 g, 1.96 mL). The amide **6h** was obtained as brown solid (14.7 mmol, 3.57 g, 99%).

C₁₅H₁₅NO₂, MW: 241.29 g mol⁻¹. ¹H-NMR (**300** MHz, CDCl₃): δ = 7.43-7.28 (*m*, 7 H, *o*-C₆H₄OMe & C₆H₅), 7.09 (*bs*, 1 H, N*H*), 6.84-6.77 (*m*, 2 H, *m*-C₆H₄OMe), 3.76 (*s*, 3 H, OCH₃), 3.71 (*s*, 2 H, C(=O)CH₂). The analytical data are in accordance with the literature.^[20]

N-(4-Methoxyphenyl)propionamide (60)

According to **GP1b**, *p*-anisidine (16.2 mmol, 2.00 g) was reacted with propionyl chloride (15.5 mmol, 1.43 g, 1.35 mL). The amide **60** was obtained as a brown solid (15.1 mmol, 2.70 g, 97%).

 $C_{10}H_{13}NO_2$, MW: 179.22 g mol⁻¹. ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.44-7.37$ (*m*, 2 H, *o*-C₆*H*₄OMe), 7.32 (*bs*, 1 H, N*H*), 6.87-6.80 (*m*, 2 H, *m*-C₆*H*₄OMe), 3.78 (*s*, 3 H, OC*H*₃), 2.35 (*q*, *J* = 7.5, 2 H, C(=O)C*H*₂), 1.23 (*t*, *J* = 7.5, 3 H, C(=O)CH₂C*H*₃). The analytical data are in accordance with the literature.^[21]

N-Phenylpropionamide (6p)

According to **GP1b**, aniline (16.2 mmol, 1.51 g, 1.48 mL) was reacted with propionyl chloride (14.7 mmol, 1.36 g, 1.29 mL). The amide **6p** was obtained as a slightly yellow solid (14.5 mmol, 2.17 g, 99%).

C₉**H**₁₁**NO, MW:** 149.19 g mol⁻¹. ¹**H-NMR (300 MHz, CDCl₃):** $\delta = 7.52$ (*bd*, J = 8.2, 2 H, *o*-C₆*H*₅), 7.32 (*bt*, J = 7.7, 2 H, *m*-C₆*H*₅), 7.17-7.05 (*m*, 2 H, *p*-C₆H₅ & N*H*), 2.39 (*q*, J = 7.5, 2 H, C(=O)C*H*₂), 1.25 (*t*, J = 7.5, 3 H, C*H*₃). The analytical data are in accordance with the literature.^[22]

Synthesis of *N*-Imidoylbenzotriazoles (8)

(E)-1-(1H-Benzo[d][1,2,3]triazol-1-yl)-N-(4-methoxyphenyl)ethan-1-imine (8a)

According to **GP2a**, triphenylphosphine (15.02 mmol, 3.94 g) was reacted with 1-chloro-1Hbenzo[d][1,2,3]triazole (15.04 mmol, 2.31 g) and *N*-(4-methoxyphenyl)acetamide **6a** (5.00 mml, 821.0 mg) to yield **8a** after purification by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 10/1 + 3% NEt₃) as a white solid (3.45 mmol, 918.2 mg, 69%).

 $C_{15}H_{14}N_4O$, MW: 266.30 g mol⁻¹. ¹H-NMR (300 MHz, CDCl₃): $\delta = 8.55$ (*dt*, J = 8.3, 1.0, 1 H, C₆*H*₄), 8.12 (*dt*, J = 8.3, 1.0, 1 H, C₆*H*₄), 7.60 (*ddd*, J = 8.3, 7.1, 1.0, 1 H, C₆*H*₄), 7.48 (*ddd*, J = 8.3, 7.1, 1.0, 1 H, C₆*H*₄), 7.00-6.88 (*m*, 4 H, C₆*H*₄OMe), 3.85 (*s*, 3 H, OC*H*₃), 2.77 (*s*, 3 H, C(=N)C*H*₃). The analytical data are in accordance with the literature.^[9]

(*E*)-1-(1H-Benzo[d][1,2,3]triazol-1-yl)-*N*-(4-nitrophenyl)-2-phenylethan-1-imine (8f)

According to **GP2a**, triphenylphosphine (1.00 mmol, 262.0 mg) was reacted with 1-Chloro-1Hbenzo[d][1,2,3]triazole (1.00 mmol, 154.0 mg) and *N*-(4-nitrophenyl)-2-phenylacetamide **6f** (0.50 mmol, 128.0 mg) to yield **8f** after purification by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 18/1 + 3% NEt₃) as a yellow solid (0.29 mmol, 102.0 mg, 57%).

C₂₀**H**₁₅**N**₅**O**₂, **MW**: 357.37 g mol⁻¹. **Mp**: 89.3-91.0 °C (Decomposition). ¹**H-NMR (300 MHz, CDCl**₃): $\delta = 8.45$ (*d*, *J* = 8.3, 1 H, C₆*H*₄), 8.31-8.25 (*m*, 2 H, *m*-C₆*H*₄NO₂), 8.15 (*d*, *J* = 8.3, 1 H, C₆*H*₄), 7.64 (*dt*, *J* = 8.3, 1.0, 1 H, C₆*H*₄), 7.52 (*dt*, *J* = 8.3, 1.0, 1 H, C₆*H*₄), 7.23-7.17 (*m*, 3 H, C₆*H*₅), 7.13-7.07 (*m*, 2 H, C₆*H*₅), 7.06-7.00 (*m*, 2 H, *o*-C₆*H*₄NO₂), 4.61 (*s*, 2 H, C₆H₅C*H*₂). ¹³**C-NMR (75 MHz, CDCl**₃): $\delta = 155.2$, 152.8, 146.8, 144.5, 134.4, 131.3, 129.8, 128.9, 128.7, 127.3, 126.0, 125.2, 120.7, 120.2, 115.4, 35.4. **IR (CDCl**₃): $\tilde{V} = 3065$, 1672, 1588, 1512, 1486, 1449, 1397, 1339, 1292, 1251, 1222, 1110, 1070, 1026, 857, 784, 769, 751, 715, 699. **MS (ESI)** *m/z*: 380.1 (100%, [M+Na]⁺), 330.1 (35%),

279.1 (3%), 239.1 (9%), 182.1 (1%), 142.0 (2%), 118.1 (5%), 91.1 (1%). **HRMS (ESI)** *m/z*: calculated for $C_{20}H_{15}N_5O_2 + Na$: 380.1118; found: 380.1118.

Synthesis of Allylic Imidates (9)

((E)-5-Phenylpent-2-en-1-yl)-N-(4-methoxyphenyl)acetimidate (9a)

According to **GP2c**, *N*-(4-methoxyphenyl)acetamide **6a** (5.45 mmol, 900.0 mg) was reacted with oxalyl chloride (5.45 mmol, 710.4 mg, 0.48 mL) and (*E*)-5-phenylpent-2-en-1-ol **1a** (1.82 mmol, 295.0 mg) to yield **9a** after purification by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 18/1 + 3% NEt₃) as a slightly yellow oil (1.18 mmol, 365.1 mg, 65%).

Alternatively, (*E*)-5-phenylpent-2-en-1-ol **1a** (2.10 mmol, 340.0 mg) was reacted with LHMDS (2.10 mml, 2.10 mL, 1M in THF) and (*E*)-1-(1H-benzo[d][1,2,3]triazol-1-yl)-*N*-(4-methoxyphenyl)ethan-1-imine **8a** (1.17 mmol, 312.0 mg) at 60 °C for 20 h. Purification by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 18/1 + 3% NEt₃) yielded **9a** as a slightly yellow oil (0.66 mmol, 203.1 mg, 56%).

C₂₀**H**₂₃**NO**₂, **MW**: 309.40 g mol⁻¹. ¹**H-NMR** (**300 MHz, CDCl**₃): $\delta = 7.32-7.25$ (*m*, 2 H, *m*-C₆*H*₅), 7.22-7.15 (*m*, 3 H, *o*-C₆*H*₅ & *p*-C₆*H*₅), 6.87-6.81 (*m*, 2 H, *o*-C₆*H*₄OMe), 6.72-6.65 (*m*, 2 H, *m*-C₆*H*₄OMe), 5.92-5.80 (*m*, 1 H, CH=CH), 5.79-5.58 (*m*, 1 H, CH=CH), 4.62 (*d*, *J* = 6.0, 2 H, OCH₂), 3.79 (*s*, 3 H, OCH₃), 2.77-2.70 (*m*, 2 H, C₆H₅CH₂CH₂), 2.46-2.36 (*m*, 2 H, C₆H₅CH₂CH₂), 1.84 (*s*, 3 H, C(=O)CH₃). ¹³**C-NMR** (**75 MHz, CDCl**₃): $\delta = 161.4$, 155.7, 142.5, 141.9, 134.7, 128.6, 128.5, 126.0, 125.6, 122.1, 114.4, 66.5 (OCH₂), 55.6, 35.6, 34.4, 16.3. **IR** (**CDCl**₃): $\tilde{V} = 3027$, 2933, 2834, 2183, 1960, 1774, 1747, 1668, 1506, 1455, 1381, 1271, 1234, 1038, 967, 840, 750, 699. **MS** (**EI**) *m/z*: 309.1 (11%, [M]⁺), 218.1 (100%), 165.1 (24%), 123.0 (55%), 91.0 (43%). **HRMS (ESI)** *m/z*: calculated for C₂₀H₂₃NO₂ + Na: 332.1621; found: 332.1628.

((*E*)-Pent-2-en-1-yl)-*N*-(4-methoxyphenyl)acetimidate (9b)

According to **GP2c**, *N*-(4-methoxyphenyl)acetamide **6a** (2.00 mmol, 330.0 mg) was reacted with oxalyl chloride (2.04 mmol, 259.0 mg, 175 μ L) and (*E*)-pent-2-en-1-ol **1b** (0.99 mmol, 85.0 mg, 100 μ L) to yield **9b** after purification by dry column chromatography on deactivated silicagel (petrol ether + 2% NEt₃) as a colorless oil (0.43 mmol, 99.2 mg, 43%).

C₁₄**H**₁₉**NO**₂, **MW**: 233.31 g mol⁻¹. ¹**H**-**NMR** (**300 MHz**, **CDCl**₃): $\delta = 6.87-6.80$ (*m* 2 H, *o*-C₆*H*₄OMe), 6.72-6.66 (*m*, 2 H, *m*C₆*H*₄OMe), 5.92-5.80 (*m*, 1 H, CH=CH), 5.75-5.63 (*m*, 1 H, CH=CH), 4.62 (*dd*, *J* = 6.4, 1.0, 2 H, OCH₂), 3.78 (*s*, 3 H, OCH₃), 2.17-2.05 (*m*, 2 H, CH₂CH₃), 1.84 (*s*, 3 H, C(=N)CH₃), 1.03 (*t*, *J* = 7.4, 3 H, CH₂CH₃). ¹³**C**-**NMR** (**125 MHz**, **CDCl**₃): $\delta = 161.4$, 155.5, 142.4, 137.3, 123.7, 122.0, 114.3, 66.6, 55.5, 25.4, 16.2, 13.3. **IR** (**CDCl**₃): $\tilde{V} = 2961$, 2933, 2834, 1666, 1609, 1504, 1462, 1440, 1379, 1363, 1286, 1270, 1230, 1179, 1102, 1036, 965, 927, 838, 801, 753, 710, 643, 623, 538. **MS** (**ESI**) *m/z*: 256.1 (10%, [M+Na]⁺), 234.2 (4%, [M+H]⁺), 192.1 (1%), 166.1 (100%), 124.1 (25%). **HRMS** (**ESI**) *m/z*: calculated for C₁₄H₁₉NO₂ + Na: 256.1308; found: 256.1281.

((E)-Hex-2-en-1-yl)-N-(4-methoxyphenyl)acetimidate (9c)

According to **GP2c**, *N*-(4-methoxyphenyl)acetamide **6a** (2.00 mmol, 330.0 mg) was reacted with oxalyl chloride (2.04 mmol, 259.0 mg, 175 μ L) and (*E*)-hex-2-en-1-ol **1c** (1.01 mmol, 100.8 mg, 120 μ L) to yield **9c** after purification by dry column chromatography on deactivated silicagel (petrol ether + 3% NEt₃) as a colorless oil (0.68 mmol, 167.2 mg, 67%).

C₁₅**H**₂₁**NO**₂, **MW**: 247.34 g mol⁻¹. ¹**H-NMR (300 MHz, CDCl₃):** δ = 6.79-6.73 (*m*, 2 H, *o*-C₆*H*₄OMe), 6.65-6.58 (*m*, 2 H, *m*-C₆*H*₄OMe), 5.80-5.56 (*m*, 2 H, CH=CH), 4.55 (*dd*, *J* = 6.0, 0.9, 2 H, OCH₂), 3.71 (*s*, 3 H, OCH₃), 1.99 (*bq*, *J* = 7.0, 2 H, CH₂CH₂CH₃), 1.77 (*s*, 3 H, C(=N)CH₃), 1.37 (*pseudo hex*, *J* = 7.3, 2 H, CH₂CH₂CH₃), 0.85 (*t*, *J* = 7.3, 3 H, CH₂CH₂CH₃). ¹³C-NMR (75 MHz, CDCl₃): δ = 161.3, 155.5, 142.4, 135.5, 124.9, 122.0, 114.2, 66.5, 55.5, 34.5, 22.2, 16.2, 13.7. IR (CDCl₃): \tilde{V} = 2957, 2930, 2872, 2834, 1667, 1505, 1463, 1440, 1379, 1364, 1287, 1271, 1232, 1179, 1102, 1038, 839, 803, 753, 711, 644, 623. **MS (ESI)** *m/z*: 303.2 (1%), 270.2 (19%, [M+Na]⁺), 248.2 (1%, [M+H]⁺), 166.1 (100%), 124.1 (22%). **HRMS (ESI)** *m/z*: calculated for C₁₅H₂₁NO₂ + Na: 270.1465; found: 270.1460.

((*E*)-Oct-2-en-1-yl)-*N*-(4-methoxyphenyl)acetimidate (9d)

According to **GP2c**, *N*-(4-methoxyphenyl)acetamide **6a** (2.00 mmol, 330.0 mg) was reacted with oxalyl chloride (2.04 mmol, 259.0 mg, 175 μ L) and (*E*)-oct-2-en-1-ol **1d** (0.98 mmol, 126.0 mg, 150 μ L) to yield **9d** after purification by dry column chromatography on deactivated silicagel (petrol ether + 2% NEt₃) as a colorless oil (0.36 mmol, 98.7 mg, 37%).

C₁₇**H**₂₅**NO**₂, **MW**: 275.39 g mol⁻¹. ¹**H-NMR (300 MHz, CDCl₃):** δ = 6.87-6.80 (*m*, 2 H, *o*-C₆*H*₄OMe), 6.72-6.65 (*m*, 2 H, *m*-C₆*H*₄OMe), 5.87-5.75 (*m*, 1 H, CH=CH), 5.74-5.63 (*m*, 1 H, CH=CH), 4.62 (*dd*, *J* = 6.2, 0.9, 2 H, OCH₂), 3.78 (*s*, 3 H, OCH₃), 2.08 (*bq*, *J* = 7.0, 2 H, CH₂(CH₂)₃CH₃), 1.84 (*s*, 3 H, C(=N)CH₃), 1.47-1.24 (*m*, 6 H, CH₂(CH₂)₃CH₃), 0.89 (*t*, *J* = 6.9, 3 H, CH₂(CH₂)₃CH₃). ¹³C-NMR (**125 MHz, CDCl**₃): δ = 161.3, 155.5, 142.4, 135.8, 124.6, 122.0, 114.3, 66.5, 55.5, 32.4, 31.4, 28.7, 22.6, 16.2, 14.1. **IR (CDCl**₃): \tilde{V} = 2955, 2926, 2856, 1666, 1504, 1463, 1440, 1380, 1364, 1286, 1270, 1230, 1179, 1101, 1037, 964, 837, 801, 753, 710, 643, 623, 559, 537. **MS (ESI)** *m/z*: 298.2 (28%, [M+Na]⁺), 276.2 (1%, [M+H]⁺), 166.1 (100%), 124.1 (23%). **HRMS (ESI)** *m/z*: calculated for C₁₇H₂₅NO₂ + Na: 298.1778; found: 298.1754.

((*E*)-Hex-2-en-1-yl)-*N*-(4-nitrophenyl)acetimidate (9e)

According to **GP2d**, *N*-(4-nitrophenyl)acetamide **6e** (1.00 mmol, 180.0 mg) was reacted with PCl₅ (1.00 mmol, 208.2 mg) and (*E*)-Hex-2-en-1-ol **1c** (1.00 mmol, 99.1 mg, 118 μ L) to yield **9e** after purification by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 35/1 +3% NEt₃) as a slightly yellow solid (0.46 mmol, 120.7 mg, 46%).

C₁₄H₁₈N₂O₃, MW: 262.30 g mol⁻¹. Mp: 69.9-70.8 °C. ¹H-NMR (**300** MHz, CDCl₃): δ = 8.22-8.14 (*m*, 2 H, *m*-C₆H₄NO₂), 6.88-6.81 (*m*, 2 H, *o*-C₆H₄NO₂), 5.89-5.77 (*m*, 1 H, CH=CH), 5.74-5.62 (*m*, 1 H, CH=CH), 5.74-5.62

1 H, CH=C*H*), 4.64 (*dd*, *J* = 6.2, 1.0, 2 H, OC*H*₂), 2.08 (*bq*, *J* = 7.1, 2 H, C*H*₂CH₂CH₃), 1.86 (*s*, 3 H, C(=N)C*H*₃), 1.45 (*pseudo hex*, *J* = 7.3 2 H, CH₂C*H*₂CH₃), 0.93 (*t*, *J* = 7.3, 3 H, CH₂CH₂C*H*₃). ¹³C-NMR (75 MHz, CDCl₃): δ = 161.1, 155.6, 143.5, 136.3, 125.1, 124.1, 121.5, 67.3, 34.4, 22.1, 16.6, 13.7. IR (CDCl₃): $\tilde{\nu}$ = 2953, 2870, 1681, 1591, 1504, 1458, 1385, 1336, 1285, 1241, 1172, 1108, 1036, 967, 918, 868, 853, 778, 753, 707, 673, 578, 561. MS (ESI) *m/z*: 395.2 (10%), 383.1 (13%), 317.1 (9%), 295.1 (5%), 285.1 (88%, [M+Na]⁺), 234.2 (6%), 181.1 (100%), 152.1 (28%), 139.1 (15%), 110.1 (7%), 93.1 (18%). HRMS (ESI) *m/z*: calculated for C₁₄H₁₈N₂O₃ + Na: 285.1210; found: 285.1196.

((Z)-Hex-2-en-1-yl)-N-(4-nitrophenyl)acetimidate ((Z)-9e)

According to **GP2d**, *N*-(4-nitrophenyl)acetamide **6e** (1.00 mmol, 180.0 mg) was reacted with PCl₅ (1.00 mmol, 208.2 mg) and (*Z*)-hex-2-en-1-ol (*Z*)-1c (1.00 mmol, 99.1 mg, 118 μ L) to yield (*Z*)-9e after purification by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 20/1 + 3% NEt₃) as a yellow oil (0.52 mmol, 136.0 mg, 52%).

C₁₄**H**₁₈**N**₂**O**₃, **MW**: 262.30 g mol⁻¹. ¹**H-NMR** (**300 MHz, CDCl**₃): $\delta = 8.21-8.15$ (*m*, 2 H, *m*-C₆*H*₄NO₂), 6.89-6.82 (*m*, 2 H, *o*-C₆*H*₄NO₂), 5.74-5.61 (*m*, 2 H, *CH*=*CH*), 4.78-4.72 (*m*, 2 H, OC*H*₂), 2.17-2.07 (*m*, 2 H, *CH*₂CH₂CH₃), 1.86 (*s*, 3 H, C(=N)*CH*₃), 1.42 (*pseudo hex*, *J* = 7.3, CH₂*CH*₂CH₃), 0.92 (*t*, *J* = 7.3, 3 H, CH₂CH₂CH₃). ¹³**C-NMR** (**75 MHz, CDCl**₃): $\delta = 161.2$, 155.5, 143.5, 135.0, 125.1, 123.8, 121.5, 62.4, 29.7, 22.6, 16.6, 13.7. **IR** (**CDCl**₃): $\tilde{V} = 2961$, 2933, 1670, 1591, 1511, 1377, 1338, 1291, 1243, 1170, 1110, 1035, 965, 904, 864, 852, 781227, 649. **MS** (**ESI**) *m/z*: 319.1 (1%), 285.1 (79%, [M+Na]⁺), 181.1 (100%), 152.1 (1%), 139.1 (12%), 122.1 (3%), 93.1 (17%). **HRMS** (**ESI**) *m/z*: calculated for C₁₄H₁₈N₂O₃ + Na: 285.1210; found: 285.1199.

((E)-Hex-2-en-1-yl)-N-(4-nitrophenyl)-2-phenylacetimidate (9f)

According to **GP2d**, *N*-(4-nitrophenyl)-2-phenylacetamide **6f** (1.00 mmol, 256.0 mg) was reacted with PCl₅ (1.00 mmol, 208.0 mg) and (*E*)-hex-2-en-1-ol **1c** (1.00 mmol, 99.1 mg, 118 μ L) to yield **9f** after

purification by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 18/1 + 3% NEt₃) as a colorless oil (0.23 mmol, 78.5 mg, 23%).

C₂₀**H**₂₂**N**₂**O**₃, **MW**: 338.40 g mol⁻¹. ¹**H-NMR** (**300** MHz, **CDCl**₃): δ = 8.19-8.12 (*m*, 2 H, *m*-C₆*H*₄NO₂), 7.31-7.21 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.10-7.05 (*m*, 2 H, *o*-C₆*H*₅), 6.83-6.76 (*m*, 2 H, *o*-C₆*H*₄NO₂), 5.85-5.73 (*m*, 1 H, CH=CH), 5.72-5.60 (*m*, 1 H, CH=CH), 4.66 (*bd*, *J* = 6.2, 2 H, OCH₂), 3.50 (*s*, 2 H, C(=N)C*H*₂), 2.06 (*bq*, *J* = 7.0, 2 H, C*H*₂CH₂CH₃), 1.42 (*pseudo hex*, *J* = 7.3, 2 H, CH₂C*H*₂CH₃), 0.91 (*t*, *J* = 7.3, 3 H, CH₂CH₂C*H*₃). ¹³**C-NMR** (**125** MHz, CDCl₃): δ = 161.2, 155.0, 143.5, 136.1, 134.9, 128.8, 128.6, 127.0, 125.0, 124.1, 121.8, 67.4, 36.9, 34.4, 22.2, 13.7. **IR** (CDCl₃): \tilde{V} = 2958, 2930, 1665, 1590, 1511, 1455, 1340, 1312, 1236, 1168, 1109, 972, 863, 852, 757, 734, 700, 652, 582. **MS** (**ESI**) *m/z*: 410.2 (2%), 394.2 (6%), 378.2 (2%), 361.2 (25%, [M+Na]⁺), 340.2 (8%), 257.1 (100%), 241.1 (4%), 139.1 (7%), 115.0 (2%), 91.1 (3%). **HRMS** (**ESI**) *m/z*: calculated for C₂₀H₂₂N₂O₃ + Na: 361.1523; found: 361.1537.

((Z)-Hex-2-en-1-yl)-N-(4-nitrophenyl)-2-phenylacetimidate ((Z)-9f)

According to **GP2b**, (*Z*)-hex-2-en-1-ol (**Z**)-1c (1.21 mmol, 121.8 mg, 145 μ L) was reacted with LHMDS (1.21 mmol, 1.21 mL, 1M in THF) and (*E*)-1-(1H-benzo[d][1,2,3]triazol-1-yl)-*N*-(4-nitrophenyl)-2-phenylethan-1-imine **8f** (1.20 mmol, 430.0 mg) at room temperature for 24 h. Purification by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 18/1 + 3% NEt₃) yielded (**Z**)-**9f** as a yellow oil (0.53 mmol, 180.1 mg, 44%).

C₂₀**H**₂₂**N**₂**O**₃, **MW**: 338.40 g mol⁻¹. ¹**H-NMR** (**300 MHz**, **CDCl**₃): δ = 8.19-8.13 (*m*, 2 H, *m*-C₆*H*₄**NO**₂), 7.30-7.21 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.10-7.04 (*m*, 2 H, *o*-C₆*H*₅), 6.84-6.78 (*m*, 2 H, *o*-C₆*H*₄**NO**₂), 5.72-5.60 (*m*, 2 H, CH=CH), 4.80-4.74 (*m*, 2 H, OCH₂), 3.50 (*s*, 2 H, C(=N)CH₂), 2.13-2.04 (*m*, 2 H, CH₂CH₂CH₃), 1.40 (*pseudo hex*, *J* = 7.4, 2 H, CH₂CH₂CH₃), 0.90 (*t*, *J* = 7.4, 3 H, CH₂CH₂CH₃). ¹³**C-NMR** (**125 MHz**, **CDCl**₃): δ = 161.3, 154.9, 143.5, 135.0, 134.9, 128.7, 128.6, 127.0, 125.0, 123.7, 121.8, 62.7, 36.8, 29.7, 22.6, 13.7. **IR** (**CDCl**₃): \tilde{V} = 2960, 2930, 1668, 1590, 1510, 1339, 1301, 1237, 1168, 1109, 996, 863, 852, 757, 700. **MS** (**ESI**) *m/z*: 455.3 (17%), 441.3 (40%), 413.3 (10%), 379.2 (2%), 361.2 (51%, [M+Na]⁺), 340.2 (5%), 312.2 (17%), 282.3 (3%), 257.1 (100%), 241.2 (8%), 228.1 (23%), 139.1 (6%), 122.0 (2%). **HRMS** (**EI**) *m/z*: calculated for C₂₀H₂₂N₂O₃ + Na: 361.1523; found: 361.1521.

((*E*)-Hex-2-en-1-yl)-*N*-phenyl-2-phenylacetimidate (9g)

According to **GP2d**, *N*-phenyl-2-phenylacetamide **6g** (5.00 mmol, 1.06 g) was reacted with PCl₅ (5.00 mmol, 1.04 g) and (*E*)-hex-2-en-1-ol **1c** (4.95 mmol, 495.6 mg, 590 μ L) to yield **9g** after purification by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 20/1 + 3% NEt₃) as a colorless oil (3.40 mmol, 996.2 mg, 68%).

C₂₀**H**₂₃**NO**, **MW**: 293.40 g mol⁻¹. ¹**H-NMR** (**300 MHz**, **CDCl**₃): $\delta = 7.32-7.19$ (*m*, 5 H, *m*-C₆*H*₅CH₂ & *p*-C₆*H*₅CH₂ & *m*-C₆*H*₅N), 7.16-7.10 (*m*, 2 H, *o*-C₆*H*₅CH₂), 7.08-7.00 (*m*, 1 H, *p*-C₆*H*₅N), 6.79-6.72 (*m*, 2 H, *o*-C₆*H*₅N), 5.81-5.60 (*m*, 2 H, CH=CH), 4.65 (*bd*, *J* = 5.6, 2 H, OCH₂), 3.51 (*s*, 2 H, C(=N)CH₂), 2.04 (*bq*, *J* = 6.8, 2 H, CH₂CH₂CH₃), 1.42 (*pseudo hex*, *J* = 7.3, 2 H, CH₂CH₂CH₃), 0.91 (*t*, *J* = 7.3, 3 H, CH₂CH₂CH₃). ¹³**C-NMR** (**125 MHz**, **CDCl**₃): $\delta = 160.7$, 148.6, 135.9, 135.2, 129.0, 128.9, 128.4, 126.5, 124.8, 122.9, 121.4, 66.6, 36.2, 34.4, 22.2, 13.7. **IR** (**CDCl**₃): $\tilde{V} = 3029$, 2957, 2928, 2872, 1665, 1596, 1489, 1454, 1377, 1290, 1229, 1168, 1151, 1072, 971, 902, 761, 730, 697, 649. **MS** (**EI**) *m*/*z*: 293.2 (19%, [M]⁺), 264.2 (29%), 251.2 (15%), 211.1 (20%),294.1 (21%), 175.1 (21%), 132.1 (18%), 119.0 (23%), 93.1 (100%), 83.1 (12%), 55.1 (28%). **HRMS (EI)** *m*/*z*: calculated for C₂₀H₂₃NO: 293.1780; found: 293.1782.

((E)-Hex-2-en-1-yl)-N-(4-methoxyphenyl)-2-phenylacetimidate (9h)

According to **GP2c**, *N*-(4-methoxyphenyl)-2-phenylacetamide **6h** (1.99 mmol, 480.0 mg) was reacted with oxalyl chloride (2.04 mmol, 259.0 mg, 175 μ L) and (*E*)-hex-2-en-1-ol **1c** (1.00 mmol, 99.1 mg, 118 μ L) to yield **9h** after purification by dry column chromatography on deactivated silicagel (petrolether + 3% NEt₃) as a colorless oil (0.50 mmol, 161.8 mg, 50%).

 $C_{21}H_{25}NO_2$, MW: 323.44 g mol⁻¹. ¹H-NMR (300 MHz, CDCl₃): δ = 7.29-7.18 (*m*, 3 H, *m*-C₆H₅ & *p*-C₆H₅), 7.15-7.10 (*m*, 2 H, *o*-C₆H₅), 6.86-6.79 (*m*, 2 H, *o*-C₆H₄OMe), 6.71-6.64 (*m*, 2 H, *m*-C₆H₄OMe), 5.80-5.59 (*m*, 2 H, CH=CH), 4.64 (*bd*, *J* = 5.5, 2 H, OCH₂), 3.79 (*s*, 3 H, OCH₃), 3.52 (*s*, 2 H, OCH₂),

2.04 (*bq*, *J* = 6.9, 2 H, C*H*₂CH₂CH₃), 1.41 (*pseudo hex*, *J* = 7.4, 2 H, CH₂C*H*₂CH₃), 0.91 (*t*, *J* = 7.4, 3 H, CH₂CH₂CH₃). ¹³C-NMR (125 MHz, CDCl₃): δ = 161.4, 155.6, 141.9, 136.1, 135.1, 128.9, 128.4, 126.5, 124.9, 122.3, 114.3, 66.5, 55.5, 36.1., 34.3, 22.2, 13.7. IR (CDCl₃): $\tilde{\nu}$ = 2956, 2929, 2871, 1663, 1603, 1504, 1454, 1440, 1376, 1288, 1228, 1163, 1102, 1037, 971, 840, 734, 715, 697. MS (ESI) *m/z*: 346.2 (25%, [M+Na]⁺), 324.2 (3%, [M+H]⁺), 242.1 (100%), 124.1 (2%). HRMS (ESI) *m/z*: calculated for C₂₁H₂₅NO₂ + Na: 346.1778; found: 346.1768.

((Z)-Hex-2-en-1-yl)-N-(4-methoxyphenyl)-2-phenylacetimidate ((Z)-9h)

According to **GP2c**, *N*-(4-methoxyphenyl)-2-phenylacetamide **6h** (0.50 mmol, 120.0 mg) was reacted with oxalyl chloride (0.52 mmol, 65.7 mg, 45 μ L) and (*Z*)-hex-2-en-1-ol (*Z*)-1c (0.40 mmol, 40.3 mg, 48 μ L) to yield (*Z*)-9h after purification by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 30/1 + 3% NEt₃) as a colorless oil (0.23 mmol, 73.0 mg, 57%).

C₂₁**H**₂₅**NO**₂, **MW**: 323.44 g mol⁻¹. ¹**H-NMR (300 MHz, CDCl**₃): δ = 7.30-7.18 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.15-7.09 (*m*, 2 H, *o*-C₆*H*₅), 6.86-6.79 (*m*, 2 H, *o*-C₆*H*₄OMe), 6.72-6.64 (*m*, 2 H, *m*-C₆*H*₄OMe), 5.71-5.55 (*m*, 2 H, CH=CH), 4.77-4.72 (*m*, 2 H, OCH₂), 3.79 (*s*, 3 H, OCH₃), 3.52 (*s*, 2 H, C(=N)CH₂), 2.07 (*bq*, *J* = 7.0, 2 H, CH₂CH₂CH₃), 1.38 (*pseudo hex*, *J* = 7.3, 2 H, CH₂CH₂CH₃), 0.89 (*t*, *J* = 7.3, 3 H, CH₂CH₂CH₃). ¹³**C-NMR (125 MHz, CDCl**₃): δ = 161.5, 155.6, 141.8, 136.0, 134.2, 128.9, 128.4, 126.5, 124.5, 122.2, 114.3, 62.0, 55.5, 36.1, 29.7, 22.7, 13.7. **IR (CDCl**₃): \tilde{V} = 3001, 2960, 2929, 2872, 1658, 1599, 1505, 1494, 1453, 1424, 1292, 1271, 1225, 1178, 1162, 1108, 1029, 990, 970, 919, 898, 854, 815. **MS (ESI)** *m*/*z*: 346.2 (3%, [M+Na]⁺), 324.2 (5%, [M+H]⁺), 242.1 (100%), 124.1 (1%). **HRMS (ESI)** *m*/*z*: calculated for C₂₁H₂₅NO₂ + H: 324.1958; found: 324.1964.

((E)-Oct-2-en-1-yl)-N-(4-methoxyphenyl)-2-phenylacetimidate (9i)

According to **GP2c**, *N*-(4-methoxyphenyl)-2-phenylacetamide **6h** (1.99 mmol, 480.0 mg) was reacted with oxalyl chloride (2.04 mmol, 259.0 mg, 175 μ L) and (*E*)-oct-2-en-1-ol **1d** (0.98 mmol, 126.0 mg,

150 μ L) to yield **9i** after purification by dry column chromatography on deactivated silicagel (petrol ether + 1% NEt₃) as a slightly yellow oil (0.74 mmol, 260.4 mg, 76%).

C₂₃**H**₂₉**NO**₂, **MW**: 351.49 g mol⁻¹. ¹**H-NMR (300 MHz, CDCl₃):** δ = 7.30-7.18 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.15-7.09 (*m*, 2 H, *o*-C₆*H*₅), 6.86-6.79 (*m*, 2 H, *o*-C₆*H*₄OMe), 6.70-6.64 (*m*, 2 H, *m*-C₆*H*₄OMe), 5.80-5.58 (*m*, 2 H, CH=CH), 4.63 (*d*, *J* = 5.7, 2 H, OCH₂), 3.78 (*s*, 3 H, OCH₃), 3.52 (*s*, 2 H, C(=N)C*H*₂), 2.05 (*bq*, *J* = 6.9, 2 H, C*H*₂(CH₂)₃CH₃), 1.43-1.23 (*m*, 6 H, CH₂(C*H*₂)₃CH₃), 0.89 (*t*, *J* = 6.9, 3 H, CH₂(CH₂)₃C*H*₃). ¹³**C-NMR (125 MHz, CDCl₃):** δ = 161.4, 155.6, 141.9, 136.1, 135.4, 128.9, 128.4, 126.5, 124.6, 122.2, 114.3, 66.6, 55.5, 36.1, 32.3, 31.4, 28.7, 22.6, 14.1. **IR (CDCl₃):** \tilde{V} = 3030, 2954, 2926, 2856, 1663, 1603, 1504, 1455, 1440, 1376, 1288, 1228, 1163, 1151, 1102, 1038, 974, 840, 817, 774, 734, 715, 697, 676, 625, 544. **MS (ESI)** *m/z*: 374.2 (21%, [M+Na]⁺), 352.2 (9%, [M+H]⁺), 242.1 (100%), 124.1 (2%). **HRMS (ESI)** *m/z*: calculated for C₂₃H₂₉NO₂ + Na: 374.2091; found: 374.2073.

((E)-Pent-2-en-1-yl)-N-(4-methoxyphenyl)-2-phenylacetimidate (9j)

According to **GP2c**, *N*-(4-methoxyphenyl)-2-phenylacetamide **6h** (1.99 mmol, 480.0 mg) was reacted with oxalyl chloride (2.04 mmol, 259.0 mg, 175 μ L) and (*E*)-pent-2-en-1-ol **1b** (1.48 mmol, 127.5 mg, 150 μ L) to yield **9j** after purification by dry column chromatography on deactivated silicagel (petrol ether + 1% NEt₃) as a slightly yellow oil (0.72 mmol, 224.2 mg, 49%).

C₂₀**H**₂₃**NO**₂, **MW**: 309.41 g mol⁻¹. ¹**H**-**NMR (300 MHz, CDCl₃):** δ = 7.30-7.18 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.15-7.09 (*m*, 2 H, *o*-C₆*H*₅), 6.86-6.79 (*m*, 2 H, *o*-C₆*H*₄OMe), 6.70-6.63 (*m*, 2 H, *m*-C₆*H*₄OMe), 5.85-5.73 (*m*, 1 H, CH=CH), 5.70-5.58 (*m*, 1 H, CH=CH), 4.64 (*dd*, *J* = 6.0, 1.0, 2 H, OCH₂), 3.78 (*s*, 3 H, OCH₃), 3.52 (*s*, 2 H, C(=N)CH₂), 2.14-2.01 (*m*, 2 H, CH₂CH₃), 1.00 (*t*, *J* = 7.4, 3 H, CH₂CH₃). ¹³C-NMR (**125 MHz, CDCl**₃): δ = 161.4, 155.6, 141.8, 136.8, 136.0, 128.9, 128.4, 126.5, 123.7, 122.2, 114.3, 66.6, 55.5, 36.1, 25.4, 13.3. **IR (CDCl**₃): \tilde{V} = 3030, 2961, 2833, 1662, 1603, 1505, 1455, 1440, 1375, 1289, 1227, 1163, 1102, 1037, 994, 969, 841, 775, 734, 715, 698, 625, 545. **MS (ESI)** *m*/*z*: 332.2 (56%, [M+Na]⁺), 310.2 (2%, [M+H]⁺), 242.1 (100%), 124.1 (2%). **HRMS (ESI)** *m*/*z*: calculated for C₂₀H₂₃NO₂ + Na: 332.1621; found: 332.1614.

((E)-4-Methylpent-2-en-1-yl)-N-(4-methoxyphenyl)-2-phenylacetimidate (9k)

According to **GP2c**, *N*-(4-methoxyphenyl)-2-phenylacetamide **6h** (0.99 mmol, 240.0 mg) was reacted with oxalyl chloride (1.05 mmol, 133.2 mg, 90 μ L) und (*E*)-4-methylpent-2-en-1-ol **1k** (0.50 mmol, 55 mg of a 92% solution in CH₂Cl₂) to yield **9k** after purification by dry column chromatography on deactivated silicagel (petrol ether + 3% NEt₃) as a yellow oil (0.25 mmol, 81.7 mg, 50%).

C₂₁**H**₂₅**NO**₂, **MW**: 323.44 g mol⁻¹. ¹**H-NMR (300 MHz, CDCl**₃): δ = 7.31-7.17 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.16-7.10 (*m*, 2 H, *o*-C₆*H*₅), 6.86-6.79 (*m*, 2 H, *o*-C₆*H*₄OMe), 6.71-6.64 (*m*, 2 H, *m*-C₆*H*₄OMe), 5.76-5.54 (*m*, 2 H, *C***H=CH**), 4.64 (*bd*, *J* = 5.8, 2 H, OCH₂), 3.79 (*s*, 3 H, OCH₃), 3.52 (*s*, 2 H, C(=N)CH₂), 2.31 (*pseudo hex*, *J* = 6.7, 1 H, CH(CH₃)₂), 1.00 (*d*, *J* = 6.7, 6 H, CH(CH₃)₂). ¹³C-NMR (**125 MHz, CDCl**₃): δ = 161.4, 155.6, 141.92, 141.86, 136.1, 128.9, 128.4, 126.5, 122.2, 121.7, 114.3, 66.6, 55.5, 36.1, 30.9, 22.2. **IR (CDCl**₃): \tilde{V} = 2957, 2833, 1662, 1603, 1504, 1455, 1381, 1290, 1227, 1163, 1103, 973, 840, 774, 734, 715, 698, 627, 545. **MS (ESI)** *m*/*z*: 346.2 (44%, [M+Na]⁺), 324.2 (1%, [M+H]⁺), 242.1 (100%), 124.1 (2%). **HRMS (ESI)** *m*/*z*: calculated for C₂₁H₂₅NO₂ + Na: 346.1778; found: 346.1776.

((E)-3-Phenylprop-2-en-1-yl)-N-(4-methoxyphenyl)-2-phenylacetimidate (9I)

According to **GP2c**, *N*-(4-methoxyphenyl)-2-phenylacetamide **6h** (0.99 mmol, 240.0 mg) was reacted with oxalyl chloride (1.05 mmol, 133.2 mg, 90 μ L) and (*E*)-3-phenylprop-2-en-1-ol **1l** (0.50 mmol, 67.0 mg) to yield **9l** after purification by dry column chromatography on deactivated silicagel (petrol ether + 3% NEt₃) as a white solid (0.35 mmol, 126.8 mg, 70%).

C₂₄**H**₂₃**NO**₂, **MW**: 357.45 g mol⁻¹. **Mp**: 60.2-61.0 °C. ¹**H-NMR** (**300 MHz, CDCl**₃): δ = 7.40-7.20 (*m* 8 H, *m*-C₆*H*₅CH₂ & *p*-C₆*H*₅CH₂ & C₆*H*₅CH), 7.18-7.12 (*m*, 2 H, *o*-C₆*H*₅CH₂), 6.87-6.81 (*m*, 2 H, *o*-C₆*H*₄OMe), 6.73-6.67 (*m*, 2 H, *m*-C₆*H*₄OMe), 5.69 (*bd*, *J* = 16.0, 1 H, C₆H₅CH=CH), 6.37 (*dt*,

J = 16.0, 5.8, 1 H, C₆H₅CH=C*H*), 4.86 (*dd*, J = 5.8, 1.5, 2 H, OC*H*₂), 3.79 (*s*, 3 H, OC*H*₃), 3.55 (*s*, 2 H, C(=N)C*H*₂). ¹³C-NMR (75 MHz, CDCl₃): $\delta = 161.2, 155.7, 141.7, 136.7, 135.9, 132.7, 129.0, 128.5, 127.8, 126.6, 124.4, 122.2, 114.3, 66.2, 55.5, 36.1. IR (CDCl₃): <math>\tilde{\nu} = 3028, 2932, 2832, 1662, 1601, 1504, 1453, 1288, 1223, 1163, 1103, 1070, 1033, 995, 965, 839, 808, 774, 734, 715, 693, 606, 547. MS (ESI)$ *m/z*: 380.2 (49%, [M+Na]⁺, 358.2 (11%, [M+H]⁺), 339.1 (3%), 301.1 (12%), 263.1 (6%), 242.1 (11%), 203.1 (1%), 172.0 (3%), 129.1 (1%), 117.1 (100%). HRMS (ESI)*m/z*: calculated for C₂₄H₂₃NO₂ + Na: 380.1621; found: 380.1621.

((*E*)-3-(4-Nitrophenylprop-2-en-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate (9m)

According to **GP2c**, *N*-(4-methoxyphenyl)-2-phenylacetamide **6h** (0.99 mmol, 240.0 mg) was reacted with oxalyl chloride (1.05 mmol, 133.2 mg, 90 μ L) und (*E*)-3-(4-nitrophenyl)prop-2-en-1-ol **1m** (0.50 mmol, 89.6 mg) to yield **9m** after purification by dry column chromatography on deactivated silicagel (petrol ether + 5% NEt₃) as a yellow solid (0.11 mmol, 43.4 mg, 22%).

C₂₄**H**₂₂**N**₂**O**₄, **MW**: 402.45 g mol⁻¹. **Mp**: 106.4-107.4 °C. ¹**H-NMR (300 MHz, CDCl₃):** δ = 8.21-8.13 (*m*, 2 H, *m*-C₆*H*₄NO₂), 7.48-7.42 (*m*, 2 H, *o*-C₆*H*₄NO₂), 7.33-7.21 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.19-7.13 (*m*, 2 H, *o*-C₆*H*₅), 6.88-6.82 (*m*, 2 H, *o*-C₆*H*₄OMe), 6.74-6.68 (*m*, 2 H, *m*-C₆*H*₄OMe), 6.62-6.46 (*m*, 2 H, CH=CH), 4.91 (*d*, *J* = 4.1, 2 H, OCH₂), 3.79 (*s*, 3 H, OCH₃), 3.58 (*s*, 2 H, C(=N)CH₂). ¹³**C**-**NMR (75 MHz, CDCl₃):** δ = 160.9, 155.8, 147.0, 143.2, 141.3, 135.8, 129.7, 129.6, 129.0, 128.5, 127.0, 126.7, 124.0, 122.1, 114.4, 65.3, 55.5, 36.0. **IR (CDCl₃):** \tilde{V} = 3031, 2933, 2834, 1666, 1597, 1504, 1454, 1340, 1290, 1225, 1163, 1108, 1076, 1033, 1005, 969, 860, 842, 775, 736, 716, 699, 625, 545. **MS (ESI)** *m/z*: 425.1 (73%, [M+Na]⁺), 403.2 (100%, [M+H]⁺). **HRMS (ESI)** *m/z*: calculated for C₂₄H₂₂N₂O₄ + Na: 425.1472; found: 425.1471.

((*E*)-3,7-Dimethylocta-2,6-dien-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate (9n)

According to **GP2c**, *N*-(4-methoxyphenyl)-2-phenylacetamide **6h** (0.99 mmol, 240.0 mg) was reacted with oxalyl chloride (1.05 mmol, 133.2 mg, 90 μ L) and geraniol **1n** (0.50 mmol, 77.0 mg) to yield **9n** after purification by dry column chromatography on deactivated silicagel (petrol ether + 3% NEt₃) as a colorless oil (0.28 mmol, 104.3 mg, 56%).

C₂₅**H**₃₁**NO**₂, **MW**: 377.53 g mol⁻¹. ¹**H-NMR (300 MHz, CDCl**₃): δ = 7.29-7.16 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.15-7.09 (*m* 2 H, *o*-C₆*H*₅), 6.85-6.79 (*m*, 2 H, *o*-C₆*H*₄OMe), 6.71-6.65 (*m*, 2 H, *m*-C₆*H*₄OMe), 5.48-5.40 (*m*, 1 H, OCH₂CH), 5.14-5.06 (*m*, 1 H, CH₂CH₂CH), 4.71 (*d*, *J* = 7.0, 2 H, OCH₂), 3.79 (*s*, 3 H, OCH₃), 3.51 (*s*, 2 H, C(=N)CH₂), 2.17-2.00 (*m*, 4 H, CH₂CH₂), 1.68 (*s*, 6 H, CH₃), 1.61 (*s*, 3 H, CH₃). ¹³C-NMR (75 MHz, CDCl₃): δ = 161.6, 155.6, 141.9, 141.0, 136.1, 131.7, 128.8, 128.4, 126.4, 123.9, 122.2, 119.3, 114.2, 62.9, 55.5, 39.6, 36.1, 26.4, 25.7, 17.7, 16.6. IR (CDCl₃): \tilde{V} = 3031, 2914, 1663, 1603, 1505, 1454, 1377, 1290, 1229, 1163, 1103, 1038, 988, 839, 775, 734, 715, 698, 676, 625, 536. MS (ESI) *m*/*z*: 400.2 (20%, [M+Na]⁺), 288.9 (1%), 264.1 (23%), 226.9 (6%), 159.0 (1%), 124.1 (6%). HRMS (ESI) *m*/*z*: calculated for C₂₅H₃₁NO₂ + Na: 400.2247; found: 400.2258.

((Z)-Hex-2-en-1-yl)-N-(4-methoxyphenyl)propionimidate ((Z)-90)

According to **GP2d**, *N*-(4-methoxyphenyl)propionamide **60** (1.00 mmol, 179.2 mg) was reacted with PCl_5 (1.00 mmol, 208.0 mg) and (*Z*)-hex-2-en-1-ol (*Z*)-1c (0.98 mmol, 97.8 mg, 115 µL) to yield (*Z*)-**90** after purification by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 20/1 + 3% NEt₃) as a slightly yellow oil (0.51 mmol, 132.0 mg, 52%).

C₁₆H₂₃NO₂, MW: 261.37 g mol⁻¹. ¹H-NMR (300 MHz, CDCl₃): δ = 6.86-6.80 (*m*, 2 H, *o*-C₆H₄OMe), 6.71-6.65 (*m*₃2 H, *m*-C₆H₄OMe), 5.73-5.58 (*m*, 2 H, CH=CH), 4.71 (*bd*, *J* = 5.5, 2 H, OCH₂), 3.78 (*s*, 3 H, OCH₃), 2.22-2.07 (*m*, 4 H, C(=N)CH₂CH₃ & CH₂CH₂CH₃), 1.41 (*pseudo hex*, *J* = 7.3, 2 H, CH₂CH₂CH₃), 1.07 (*t*, *J* = 7.6, 3 H, C(=N)CH₂CH₃), 0.91 (*t*, *J* = 7.3, 3 H, CH₂CH₂CH₃). ¹³C-NMR (125 MHz, CDCl₃): δ = 165.0, 155.4, 142.2, 134.1, 124.7, 122.0, 114.2, 61.6, 55.5, 29.7, 23.2, 22.7, 13.7, 11.2. IR (CDCl₃): $\tilde{\nu}$ = 2959, 2934, 2874, 1666, 1505, 1463, 1293, 1226, 1180, 1082, 1070, 1038, 1013, 911, 838, 734, 611. MS (ESI) *m/z*: 304.3 (1%), 284.2 (13%, [M+Na]⁺), 262.2 (12%, [M+H]⁺), 202.1 (1%), 180.1 (100%), 162.1 (1%), 124.1 (16%). HRMS (ESI) *m/z*: calculated for C₁₆H₂₃NO₂ + H: 262.1802; found: 262.1803.

((Z)-Hex-2-en-1-yl)-N-phenylpropionimidate ((Z)-9p)

According to **GP2d**, *N*-phenylpropionamide **6p** (1.00 mmol, 149.2 mg) was reacted with PCl₅ (1.00 mmol, 208.0 mg) and (*Z*)-hex-2-en-1-ol (*Z*)-1c (0.98 mmol, 97.8 mg, 115 μ L) to yield (*Z*)-9p after purification by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 20/1 + 3% NEt₃) as a colorless oil (0.48 mmol, 111.6 mg, 49%).

C₁₅H₂₁NO, MW: 231.33 g mol⁻¹. ¹H-NMR (300 MHz, CDCl₃): $\delta = 7.31-7.23$ (*m*, 2 H, *m*-C₆H₅), 7.05-6.99 (*m*, 1 H, *p*-C₆H₅), 6.78-6.73 (*m*, 2 H, *o*-C₆H₅), 5.74-5.59 (*m*, 2 H, CH=CH), 4.72 (*bd*, *J* = 5.3, 2 H, OCH₂), 2.22-2.08 (*m*, 4 H, C(=N)CH₂CH₃ & CH₂CH₂CH₃), 1.42 (*pseudo hex*, *J* = 7.4, 2 H, CH₂CH₂CH₃), 1.08 (*t*, *J* = 7.5, 3 H, C(=N)CH₂CH₃), 0.92 (*t*, *J* = 7.4, 3 H, CH₂CH₂CH₃). The analytical data are in accordance with the literature.^[23]

Activation of [PPFIP-CI]₂ by AgNO₃

According to GP3a, [**PPFIP-Cl**]₂ (5.0 μ mol ,10.8 mg) was reacted with AgNO₃ (20.0 μ mol, 3.4 mg) to yield [**PPFIP-(NO₃)**₂]₂ as a brown paramagnetic solid (5.0 μ mol, 11.7 mg, quant.).

 $C_{124}H_{94}Fe_2N_8O_{16}Pd_2S_2$, MW: 2340.81 g mol⁻¹. Mp: >200 °C (decomposition). $[\alpha]_D^{20}$: -908 (c = 0.05, CH₂Cl₂). IR (solid): $\tilde{\nu} = 3056$, 1577, 1443, 1378, 1266, 1169, 1077, 1025, 986, 968, 843, 800, 781, 737, 693, 667, 619, 594, 541, 508. MS (ESI) *m/z*: 2154.4 (1%, [M-(NO₃)₃]⁺), 1045.2 (100%,

 $[ligand+Pd]^+$). **Microanalysis:** Calculated for $C_{124}H_{94}Fe_2N_8O_{16}Pd_2S_2 + 2$ THF: C: 63.80; H: 4.46; N: 4.51; S: 2.58; found: C: 63.72; H: 4.31; N: 4.21; S: 2.65.

Synthesis of Allylic Amides (10)

(R)-N-(4-Methoxyphenyl)-N-(5-phenylpent-1-en-3-yl)acetamide (10a)

According to **GP4b**, (*E*)-((*E*)-5-phenylpent-2-en-1-yl)-*N*-(4-methoxyphenyl)acetimidate **9a** (64.4 µmol, 20.0 mg) was reacted with proton sponge (4 mol%, 2.5 µmol, 50 µL of a stock solution with c = 50.0 µmol/mL in CHCl₃) and the activated catalyst [**PPFIP-(NO**₃)₂]₂ (1 mol%, 0.6 µmol, 100 µL of a stock solution with c = 6.0 µmol/mL in CHCl₃, prepared according to **GP3a**) in CHCl₃ at 70 °C for 24 h to yield **10a** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 4/1) as a colorless oil (59.8 µmol, 18.5 mg, 93%, *ee* = 98%). The enantiomeric excess was determined by HPLC: *Chiracel AD-H*, *n*-hexane/*i*-PrOH (98/2), 1.0 mL min⁻¹, 250 nm, 25.34 min (minor enantiomer), 34.04 min (major enantiomer).

Alternatively, (*E*)-((*E*)-5-phenylpent-2-en-1-yl)-*N*-(4-methoxyphenyl)acetimidate **9a** (64.4 μ mol, 20.0 mg) was reacted according to **GP4b** with the activated catalyst **[FBIP-OTs-MeCN]** (3 mol%, 1.9 μ mol, 160 μ L of a stock solution with *c* = 12.0 μ mol/mL in CHCl₃, prepared according to **GP3b**) in CHCl₃ at room temperature for 72 h to yield **10a** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 4/1) as a colorless oil (59.8 μ mol, 18.5 mg, 93%, *ee* = 89%).

C₂₀**H**₂₃**NO**₂, **MW**: 309.41 g mol⁻¹. [*α*]_D²⁰: +37.1 (*c* = 0.41, CHCl₃, sample with *ee* = 98%). ¹**H-NMR** (**300 MHz**, **CDCl**₃): δ = 7.30-7.23 (*m*, 2 H, *m*-C₆H₅), 7.20-7.13 (*m*, 3 H, *o*-C₆H₅ & *p*-C₆H₅), 7.06-7.00 (*m*, 2 H, *o*-C₆H₄OMe), 6.91-6.86 (*m*, 2 H, *m*-C₆H₄OMe), 5.64 (*ddd*, *J* = 17.3, *J* = 10.2, *J* = 7.9, 1 H, CH=CH₂), 5.32-5.14 (*m*, 3 H, CHCH=CH₂), 3.82 (*s*, 3 H, OCH₃), 2.73-2.56 (*m*, 2 H, C₆H₅CH₂CH₂), 1.91-1.81 (*m*, 1 H, C₆H₅CH₂CH₂), 1.78 (*s*, 3 H, C(=O)CH₃), 1.75-1.65 (*m*, 1 H, C₆H₅CH₂CH₂). ¹³**C**-**NMR** (**75 MHz**, **CDCl**₃): δ = 170.8, 159.3, 141.9, 137.1, 132.6, 131.1, 128.49, 128.46, 126.0, 118.1, 114.4, 57.4, 55.5, 34.2, 33.0, 23.5. **IR** (**CDCl**₃): \tilde{V} = 3026, 2934, 2839, 2365, 2099, 1890, 1651, 1508, 1454, 1383, 1312, 1292, 1245, 1170, 1106, 1031, 997, 927, 839, 753, 700, 593. **MS** (**ESI**) *m/z*: 332.1 (100%, [M+Na]⁺), 310.2 (73%, [M+H]⁺). **HRMS** (**ESI**) *m/z*: calculated for C₂₀H₂₃NO₂ + H: 310.1802; found: 310.1804.

(R)-N-(4-Methoxyphenyl)-N-(pent-1-en-3-yl)acetamide (10b)

According to **GP4b**, (*E*)-((*E*)-pent-2-en-1-yl)-*N*-(4-methoxyphenyl)acetimidate **9b** (85.7 µmol, 20.0 mg) was reacted with proton sponge (4 mol%, 3.5 µmol, 70 µL of a stock solution with c = 50.0 µmol/mL in CHCl₃) and the activated catalyst [**PPFIP-(NO**₃)₂]₂ (1 mol%, 0.8 µmol, 130 of a stock solution with c = 6.0 µmol/mL in CHCl₃, prepared according to **GP3a**) in CHCl₃ at 70 °C for 24 h to yield **10b** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 4/1) as a colorless oil (78.8 µmol, 18.4 mg, 92%, *ee* = 96%). The enantiomeric excess was determined by HPLC: *Chiracel AD-H*, *n*-hexane/*i*-PrOH (99.5/0.5), 2.0 mL min⁻¹, 250 nm, 21.98 min (major enantiomer), 28.96 min (minor enantiomer).

C₁₄**H**₁₉**NO**₂, **MW**: 233.31 g mol⁻¹. [*α*]_D²⁰: +5.5 (*c* = 0.33, CHCl₃, sample with *ee* = 96%). ¹**H-NMR** (**300 MHz, CDCl₃**): δ = 7.05-6.97 (*m*, 2 H, *o*-C₆*H*₄OMe), 6.91-6.85 (*m*, 2 H, *m*-C₆*H*₄OMe), 5.65-5.50 (*m*, 1 H, CHC*H*=CH₂), 5.22-5.03 (*m*, 3 H, C*H*CH=C*H*₂), 3.82 (*s*, 3 H, OC*H*₃), 1.76 (*s*, 3 H, C(=O)C*H*₃), 1.62-1.34 (*m*, 2 H, C*H*₂CH₃), 0.92 (*t*, *J* = 7.4, 3 H, CH₂C*H*₃). ¹³**C-NMR** (**75 MHz, CDCl**₃): δ = 170.6, 159.1, 137.1, 132.7, 131.0, 117.6, 114.2, 59.0, 55.4, 25.1, 23.3, 11.0. **IR (CDCl**₃): \tilde{V} = 2965, 2934, 1654, 1509, 1460, 1443, 1384, 1316, 1291, 1247, 1170, 1106, 1075, 1032, 998, 967, 926, 839, 810, 791, 756, 647, 588. **MS (ESI)** *m/z*: 256.1 (100%, [M+Na]⁺), 234.2 (1%, [M+H]⁺). **HRMS (ESI)** *m/z*: calculated for C₁₄H₁₉NO₂ + Na: 256.1308; found: 256.1295.

(R)-N-(Hex-1-en-3-yl)-N-(4-methoxyphenyl)acetamide (10c)

According to **GP4b**, (*E*)-((*E*)-hex-2-en-1-yl)-*N*-(4-methoxyphenyl)acetimidate **9c** (80.8 µmol, 20 mg) was reacted with proton sponge (4 mol%, 3.2 µmol, 0.7 mg, 65 µL of a stock solution c = 50.0 µmol/mL in CHCl₃) and the activated catalyst [**PPFIP-(NO**₃)₂]₂ (1 mol%, 0.8 µmol, 130 of a stock solution with c = 6.0 µmol/mL in CHCl₃, prepared according to **GP3a**) in CHCl₃ at 70 °C for 24 h to yield **10c** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 5/1) as a colorless oil (74.4 µmol, 18.4 mg, 92%, *ee* = 96%). The enantiomeric excess was

determined by HPLC: *Chiracel AD-H*, *n*-hexane/*i*-PrOH (99.2/0.8), 1.0 mL min⁻¹, 250 nm, 31.13 min (minor enantiomer), 34.44 min (major enantiomer).

C₁₅**H**₂₁**NO**₂, **MW**: 247.34 g mol⁻¹. [α]_D²⁰: -12.2 (c = 0.39, CHCl₃, sample with ee = 96%).¹**H-NMR** (**300 MHz, CDCl₃**): $\delta = 7.04-6.97$ (m, 2 H, o-C₆ H_4 OMe), 6.92-6.85 (m, 2 H, m-C₆ H_4 OMe), 5.66-5.52 (m, 1 H, CHCH=CH₂), 5.24-5.06 (m, 3 H, CHCH=CH₂), 3.83 (s, 3 H, OCH₃), 1.75 (s, 3 H, C(=O)CH₃), 1.55-1.27 (m, 4 H, CH₂CH₂CH₃), 0.91 (t, J = 7.1, 3 H, CH₂CH₂CH₂OH₃). ¹³C-NMR (**63 MHz, CDCl₃**): $\delta = 170.6$, 159.1, 137.4, 132.6, 131.0, 117.4, 114.2, 57.1, 55.4, 34.2, 23.4, 19.6, 14.0. **IR (CDCl₃):** $\tilde{V} = 2957$, 2932, 1654, 1509, 1463, 1383, 1314, 1293, 1247, 1170, 1106, 1033, 925, 837, 758, 590. **MS (ESI)** m/z: 270.1 (100%, [M+Na]⁺), 248.2 (1%, [M+H]⁺). **HRMS (ESI)** m/z: calculated for C₁₅H₂₁NO₂ + Na: 270.1465; found: 270.1446.

(R)-N-(4-Methoxyphenyl)-N-(oct-1-en-3-yl)acetamide (10d)

According to **GP4b**, (*E*)-((*E*)-oct-2-en-1-yl)-*N*-(4-methoxyphenyl)acetimidate **9d** (72.6 μ mol, 20.0 mg) was reacted with proton sponge (4 mol%, 3.0 μ mol, 60 μ L of a stock solution with $c = 50.0 \,\mu$ mol/mL in CHCl₃) and the activated catalyst [**PPFIP-(NO**_3)₂]₂ (1 mol%, 0.7 μ mol, 120 μ L of a stock solution with $c = 6.0 \,\mu$ mol/mL in CHCl₃, prepared according to **GP3a**) in CHCl₃ at 70 °C for 24 h to yield **10d** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 6/1) as a colorless oil (66.1 μ mol, 18.2 mg, 91%, *ee* = 92%). The enantiomeric excess was determined by HPLC: *Chiracel AD-H*, *n*-hexane/*i*-PrOH (99/1), 1.0 mL min⁻¹, 250 nm, 25.33 min (minor enantiomer), 29.71 min (major enantiomer).

C₁₇**H**₂₅**NO**₂, **MW**: 275.39 g mol⁻¹. [**α**]_D²⁰: -20.5 (*c* = 0.41, CHCl₃, sample with *ee* = 92%).¹**H-NMR** (**300 MHz, CDCl₃**): δ = 7.04-6.96 (*m*, 2 H, *o*-C₆*H*₄OMe), 6.92-6.85 (*m*, 2 H, *m*-C₆*H*₄OMe), 5.66-5.52 (*m*, 1 H, CHC*H*=CH₂), 5.22-5.07 (*m*, 3 H, CHCH=CH₂), 3.83 (*s*, 3 H, OC*H*₃), 1.76 (*s*, 3 H, C(=O)C*H*₃), 1.55-1.18 (*m*, 8 H, (C*H*₂)₄CH₃), 0.87 (*t*, *J* = 6.8, 3 H, (CH₂)₄C*H*₃). ¹³**C-NMR (125 MHz, CDCl**₃): δ = 170.6, 159.1, 137.5, 132.7, 131.1, 117.4, 114.2, 57.4, 55.4, 32.1, 31.8, 26.1, 23.4, 22.6, 14.1. **IR (CDCl**₃): \tilde{V} = 2954, 2929, 2857, 1654, 1508, 1464, 1442, 1383, 1292, 1245, 1169, 1106, 1032, 997, 924, 836, 807, 756, 645, 590. **MS (ESI)** *m/z*: 298.2 (100%, [M+Na]⁺), 276.2 (2%, [M+H]⁺). **HRMS (ESI)** *m/z*: calculated for C₁₇H₂₅NO₂ + Na: 298.1778; found: 298.1766.

(R)-N-(Hex-1-en-3-yl)-N-(4-nitrophenyl)acetamide (10e)

According to **GP4b**, (*E*)-((*E*)-hex-2-en-1-yl)-*N*-(4-nitrophenyl)acetimidate **9e** (76.2 µmol, 20.0 mg) was reacted with proton sponge (4 mol%, 3.0 µmol, 60 µL of a stock solution with c = 50.0 µmol/mL in CHCl₃) and the activated catalyst [**PPFIP-(NO**₃)₂]₂ (1 mol%, 0.7 µmol, 120 µL of a stock solution with c = 6.0 µmol/mL in CHCl₃, prepared according to **GP3a**) in CHCl₃ at 70 °C for 24 h to yield **10e** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 4/1) as a white solid (71.6 µmol, 18.8 mg, 94%, *ee* = 94%). The enantiomeric excess was determined by HPLC: *Chiracel AS-H*, *n*-hexane/*i*-PrOH (96/4), 1.0 mL min⁻¹, 250 nm, 43.07 min (minor enantiomer), 52.51 min (major enantiomer).

Alternatively, (E)-((E)-hex-2-en-1-yl)-*N*-(4-nitrophenyl)acetimidate **9e** (76.2 µmol, 20.0 mg) was reacted according to **GP4b** with the activated catalyst **[FBIP-OTs-MeCN]** (3 mol%, 2.3 µmol, 190 µL of a stock solution with $c = 12.0 \mu mol/mL$ in CHCl₃, prepared according to **GP3b**) in CHCl₃ at room temperature for 72 h to yield **10e** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 4/1) as a white solid (68.6 µmol, 18.0 mg, 90%, *ee* = 90%).

C₁₄**H**₁₈**N**₂**O**₃, **MW**: 262.31 g mol⁻¹. **Mp**: 46.4-47.0 °C (sample with *ee* = 90%). [**α**]_D²⁰: −32.3 (*c* = 0.32, CHCl₃, sample with *ee* = 90%). ¹**H**-NMR (**300** MHz, **CDCl**₃): δ = 8.30-8.23 (*m*₂2 H, *m*-C₆*H*₄NO₂), 7.34-7.27 (*m*, 2 H, *o*-C₆*H*₄NO₂), 5.70-5.55 (*m*, 1 H, CHCH=CH₂), 5.25-5.11 (*m*, 3 H, CHCH=CH₂), 1.82 (*s*, 3 H, C(=O)CH₃), 1.57-1.28 (*m*, 4 H, CH₂CH₂CH₃), 0.91 (*t*, *J* = 7.2, 3 H, CH₂CH₂CH₃). ¹³**C**-NMR (**125** MHz, **CDCl**₃): δ = 169.1, 147.2, 146.3, 136.6, 130.9, 124.6, 118.4, 58.1, 34.2, 23.6, 19.6, 13.9. IR (**CDCl**₃): \tilde{V} = 2959, 2932, 2873, 2362, 1666, 1591, 1522, 1493, 1380, 1345, 1310, 1109, 927, 854, 752, 706. MS (ESI) *m/z*: 413.2 (2%), 360.3 (13%), 285.1 (100%, [M+Na]⁺), 263.1 (1%, [M+H]⁺).]⁺). HRMS (ESI) *m/z*: calculated for C₁₄H₁₈N₂O₃ + Na: 285.1210; found: 285.1210.

(S)-N-(Hex-1-en-3-yl)-N-(4-nitrophenyl)acetamide ((ent)-10e)

According to **GP4b**, (*E*)-((*Z*)-hex-2-en-1-yl)-*N*-(4-nitrophenyl)acetimidate (**Z**)-9e (76.2 μ mol, 20.0 mg) was reacted with the activated catalyst [**FBIP-OTs-MeCN**] ((3 mol%, 2.3 μ mol, 190 μ L of a stock solution with *c* = 12.0 μ mol/mL in CHCl₃, prepared according to **GP3b**) in CHCl₃ at room temperature for 72 h to yield (*ent*)-10e after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 4/1) as a white solid (70.9 μ mol, 18.6 mg, 93%, *ee* = 92%). The enantiomeric excess was determined by HPLC: *Chiracel AS-H*, *n*-hexane/*i*-PrOH (96/4), 1.0 mL min⁻¹, 250 nm, 39.92min (major enantiomer), 53.48 min (minor enantiomer).

C₁₄H₁₈N₂O₃, MW: 262.31 g mol⁻¹. Mp: 46.2-46.9 °C (sample with ee = 92%). $[a]_D^{20}$: +35.3 (c = 0.31, CHCl₃, sample with ee = 92%). ¹H-NMR (300 MHz, CDCl₃): $\delta = 8.30-8.23$ (m_{2} 2 H, m-C₆H₄NO₂), 7.34-7.27 (m, 2 H, o-C₆H₄NO₂), 5.70-5.55 (m, 1 H, CHCH=CH₂), 5.25-5.11 (m, 3 H, CHCH=CH₂), 1.82 (s, 3 H, C(=O)CH₃), 1.57-1.28 (m, 4 H, CH₂CH₂CH₃), 0.91 (t, J = 7.2, 3 H, CH₂CH₂CH₃). The other analytical data are in accordance with 10e.

(R)-N-(Hex-1-en-3-yl)-N-(4-nitrophenyl)-2-phenylacetamide (10f)

According to **GP4b**, (*E*)-((*E*)-hex-2-en-1-yl)-*N*-(4-nitrophenyl)-2-phenylacetimidate **9f** (59.1 µmol, 20.0 mg) was reacted with proton sponge (4 mol%, 2.4 µmol, 50 µL of a stock solution with c = 50.0 µmol/mL in CHCl₃) and the activated catalyst [**PPFIP-(NO**₃)₂]₂ (1 mol%, 0.6 µmol, 100 µL of a stock solution with c = 6.0 µmol/mL in CHCl₃, prepared according to **GP3a**) in CHCl₃ at 70 °C for 24 h to yield **10f** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 4/1) as a colorless oil (54.9 µmol, 18.6 mg, 93%, *ee* = 95%). The enantiomeric excess was determined by HPLC: *Chiracel AS-H*, *n*-hexane/*i*-PrOH (99/1), 0.8 mL min⁻¹, 250 nm, 69.13 min (minor enantiomer), 77.19 min (major enantiomer).

C₂₀**H**₂₂**N**₂**O**₃, **MW**: 338.41 g mol⁻¹. [α]_D²⁰: -18.0 (*c* = 0.50, CHCl₃, sample with *ee* = 95%). ¹**H-NMR** (**300 MHz, CDCl**₃): δ = 8.23-8.16 (*m*, 2 H, *m*-C₆*H*₄NO₂), 7.25-7.19 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.18-

7.12 (*m*, 2 H, *o*-C₆*H*₄NO₂), 7.02-6.92 (*m*, 2 H, *o*-C₆*H*₅), 5.66-5.51 (*m*, 1 H, CHCH=CH₂), 5.24-5.11 (*m*, 3 H, CHCH=CH₂), 3.40 (*s*, 2 H, C(=O)CH₂), 1.54-1.23 (*m*, 4 H, CH₂CH₂CH₃), 0.89 (*t*, *J* = 7.1, 3 H, CH₂CH₂CH₃). ¹³C-NMR (125 MHz, CDCl₃): δ = 169.7, 147.2, 145.5, 136.4, 134.7, 131.4, 128.8, 128.6, 126.9, 118.6, 58.4, 42.4, 34.1, 19.6, 13.8. IR (CDCl₃): \tilde{V} = 2959, 2931, 2872, 1658, 1591, 1522, 1493, 1454, 1379, 1343, 1311, 1246, 1200, 1167, 1110, 998, 930, 856, 715, 703. MS (ESI) *m/z*: 377.1 (1%, [M+K]⁺), 361.2 (97%, [M+Na]⁺), 339.2 (97%, [M+H]⁺), 304.3 (2%), 282.3 (1%), 257.1 (100%), 233.1 (1%), 151.1 (1%), 139.1 (3%). HRMS (ESI) *m/z*: calculated for C₂₀H₂₂N₂O₃ + Na: 361.1523; found: 361.1527.

(S)-N-(Hex-1-en-3-yl)-N-(4-nitrophenyl)-2-phenylacetamide ((ent)-10f)

According to **GP4b**, (*E*)-((*Z*)-hex-2-en-1-yl)-*N*-(4-nitrophenyl)-2-phenylacetimidate (**Z**)-9f (59.1 μ mol, 20.0 mg) was reacted with the activated catalyst [**FBIP-OTs-MeCN**] (3 mol%, 1.7 μ mol, 140 μ L of a stock solution with *c* = 12.0 μ mol/mL in CHCl₃, prepared according to **GP3b**) in CHCl₃ at room temperature for 72 h to yield **10f** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 4/1) as a colorless oil (56.7 μ mol, 19.2 mg, 96%, *ee* = 95%). The enantiomeric excess was determined by HPLC: *Chiracel AS-H*, *n*-hexane/*i*-PrOH (99/1), 0.8 mL min⁻¹, 250 nm, 60.26 min (major enantiomer), 71.24 min (minor enantiomer).

C₂₀**H**₂₂**N**₂**O**₃, **MW**: 338.41 g mol⁻¹. $[\alpha]_D^{20}$: +17.3 (*c* = 0.53, CHCl₃, sample with *ee* = 95%). ¹**H-NMR** (**300 MHz, CDCl₃**): δ = 8.23-8.16 (*m*, 2 H, *m*-C₆*H*₄NO₂), 7.25-7.19 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.18-7.12 (*m*, 2 H, *o*-C₆*H*₄NO₂), 7.02-6.92 (*m*, 2 H, *o*-C₆*H*₅), 5.66-5.51 (*m*, 1 H, CHCH=CH₂), 5.24-5.11 (*m*, 3 H, CHCH=CH₂), 3.40 (*s*, 2 H, C(=O)CH₂), 1.54-1.23 (*m*, 4 H, CH₂CH₂CH₃), 0.89 (*t*, *J* = 7.1, 3 H, CH₂CH₂CH₃).). The other analytical data are in accordance with **10f**.

(R)-N-(Hex-1-en-3-yl)-N,2-diphenylacetamide (10g)

According to **GP4b**, (*E*)-((*E*)-hex-2-en-1-yl)-*N*-phenyl-2-phenylacetimidate **9g** (68.2 µmol, 20.0 mg) was reacted with proton sponge (4 mol%, 2.7 µmol, 55 µL of a stock solution with c = 50.0 µmol/mL in CHCl₃) and the activated catalyst [**PPFIP-(NO**₃)₂]₂ (1 mol%, 0.7 µmol, 120 µL of a stock solution with c = 6.0 µmol/mL in CHCl₃, prepared according to **GP3a**) in CHCl₃ at 70 °C for 24 h to yield **10g** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 5/1) as a colorless oil (61.4 µmol, 18.0 mg, 90%, *ee* = 97%). The enantiomeric excess was determined by HPLC: *Chiracel OD-H*, *n*-hexane/*i*-PrOH (99.5/0.5), 1.0 mL min⁻¹, 250 nm, 14.39 min (minor enantiomer), 15.10 min (major enantiomer).

C₂₀**H**₂₃**NO**, **MW**: 293.41 g mol⁻¹. [α]_D²⁰: +9.4 (*c* = 0.31, CHCl₃, sample with *ee* = 97%). ¹**H-NMR** (**300 MHz, CDCl₃**): δ = 7.40-7.33 (*m*, 3 H, Ar-*H*), 7.25-7.14 (*m*, 3 H, Ar-*H*), 7.06-6.98 (*m*, 4 H, Ar-*H*), 5.66-5.52 (*m*, 1 H, CHCH=CH₂), 5.23-5.06 (*m*, 3 H, CHCH=CH₂), 3.33 (*s*, 2 H, C(=O)CH₂), 1.60-1.24 (*m*, 4 H, CH₂CH₂CH₃), 0.89 (*t*, *J* = 7.2, CH₂CH₂CH₃). ¹³C-NMR (**125 MHz, CDCl₃**): δ = 170.1, 139.4, 137.2, 135.6, 130.5 (*b*), 129.06, 129.06, 128.3, 128.2, 126.5, 117.7, 58.0, 41.9, 34.3, 19.6, 13.9. **IR (CDCl₃):** $\tilde{\nu}$ = 3062, 2958, 2931, 2872, 1652, 1594, 1493, 1454, 1383, 1344, 1315, 1257, 1162, 1118, 1074, 1030, 998, 926, 771, 710. **MS (EI)** *m/z:* 293.2 (26%, [M]⁺), 278.2 (3%), 264.1 (10%), 250.1 (24%), 211.1 (10%), 202.1 (17%), 175.1 (21%), 146.1 (6%), 132.1 (100%), 119.0 (10%), 104.0 (3%), 91.0 (59%), 83.1 (12%), 65.0 (7%), 55.0 (17%), 41.0 (10%). **HRMS (ESI)** *m/z:* calculated for C₂₀H₂₃NO + H: 294.1852; found: 294.1845.

(R)-N-(Hex-1-en-3-yl)-N-(4-methoxyphenyl)-2-phenylacetamide (10h)

According to **GP4b**, (E)-((E)-hex-2-en-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate **9h** (61.8 µmol, 20.0 mg) was reacted with proton sponge (1 mol%, 0.6 µmol, 12 µL of a stock solution with c = 50.0 µmol/mL in CHCl₃) and the activated catalyst **[PPFIP-(NO₃)₂]**₂ (0.25 mol%, 0.15 µmol,

25 μ L of a stock solution with $c = 6.0 \,\mu$ mol/mL in CHCl₃, prepared according to **GP3a**) in CHCl₃ at 70 °C for 24 h to yield **10h** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 6/1) as a colorless oil (58.1 μ mol, 18.8 mg, 94%, *ee* = 97%). The enantiomeric excess was determined by HPLC: *Chiracel OD-H*, *n*-hexane/*i*-PrOH (99.5/0.5), 1.0 mL min⁻¹, 250 nm, 20.83 min (minor enantiomer), 22.12 min (major enantiomer).

Upscale: According to **GP4b**, (*E*)-((*E*)-hex-2-en-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate **9h** (0.77 mmol, 250.0 mg) was reacted with proton sponge (2 mol%, 15 µmol, 3.3 mg) and the activated catalyst **[PPFIP-(NO₃)₂]**₂ (0.5 mol%, 3.8 µmol, 320 µL of a stock solution with *c* = 12.0 µmol/mL in CHCl₃, prepared according to **GP3a**) in CHCl₃ at 70 °C for 24 h to yield **10h** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 6/1) as a colorless oil (0.75mol, 242.6 mg, 97%, *ee* = 96%).

Alternatively, (*E*)-((*E*)-hex-2-en-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate **9h** (61.8 μ mol, 20.0 mg) was reacted according to **GP4b** with the activated catalyst **[FBIP-OTs-MeCN]** (3 mol%, 1.8 μ mol, 150 μ L of a stock solution with *c* = 12.0 μ mol/mL in CHCl₃, prepared according to **GP3b**) in CHCl₃ at room temperature for 72 h to yield **10h** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 6/1) as a colorless oil (58.7 μ mol, 19.0 mg, 95%, *ee* = 86%).

C₂₁**H**₂₅**NO**₂, **MW**: 323.44 g mol⁻¹. [α]_D²⁰: +6.6 (*c* = 0.80, CHCl₃, sample with *ee* = 97%). ¹**H-NMR** (**300 MHz, CDCl₃**): δ = 7.25-7.14 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.06-7.00 (*m*, 2 H, *o*-C₆*H*₅), 6.96-6.82 (*m*, 4 H, C₆*H*₄OMe), 5.64-5.50 (*m*, 1 H, CHCH=CH₂), 5.22-5.05 (*m*, 3 H, CHCH=CH₂), 3.84 (*s*, 3 H, OCH₃), 3.34 (*s*, 2 H, C(=O)CH₂), 1.54-1.24 (*m*, 4 H, CH₂CH₂CH₃), 0.89 (*t*, *J* = 7.2, 3 H, CH₂CH₂CH₃). ¹³**C-NMR (125 MHz, CDCl₃):** δ = 170.9, 159.2, 137.3, 135.7, 131.9, 131.8 (*b*), 129.1, 128.2, 126.4, 117.6, 114.1, 57.7, 55.5, 41.8, 34.2, 19.6, 13.9. **IR (CDCl₃):** \tilde{V} = 2958, 2932, 2871, 1651, 1509, 1454, 1386, 1292, 1248, 1169, 1106, 1033, 926, 835, 725, 697, 596. **MS (ESI)** *m/z*: 346.2 (36%, [M+Na]⁺), 324.2 (100%, [M+H]⁺), 242.1 (3%). **HRMS (ESI)** *m/z*: calculated for C₂₁H₂₅NO₂ + H: 324.1958; found: 324.1963.

(S)-N-(Hex-1-en-3-yl)-N-(4-methoxyphenyl)-2-phenylacetamide ((ent)-10h)

According to **GP4b**, (E)-((Z)-hex-2-en-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate (**Z**)-9h (61.8 μ mol, 20.0 mg) was reacted with the activated catalyst [**FBIP-OTs-MeCN**] (3 mol%, 1.8 μ mol,

150 µL of a stock solution with $c = 12.0 \,\mu$ mol/mL in CHCl₃, prepared according to **GP3b**) in CHCl₃ at room temperature for 72 h to yield (*ent*)-10h after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 6/1) as a colorless oil (59.9 µmol, 19.4 mg, 97%, *ee* = 89%). The enantiomeric excess was determined by HPLC: *Chiracel OD-H*, *n*-hexane/*i*-PrOH (99.5/0.5), 0.5 mL min⁻¹, 250 nm, 39.67 min (major enantiomer), 47.24 min (minor enantiomer).

C₂₁H₂₅NO₂, MW: 323.44 g mol⁻¹. $[\alpha]_D^{20}$: -5.0 (*c* = 0.61, CHCl₃, sample with *ee* = 89%). ¹H-NMR (**300 MHz, CDCl₃**): δ = 7.25-7.14 (*m*, 3 H, *m*-C₆H₅ & *p*-C₆H₅), 7.06-7.00 (*m*, 2 H, *o*-C₆H₅), 6.96-6.82 (*m*, 4 H, C₆H₄OMe), 5.64-5.50 (*m*, 1 H, CHCH=CH₂), 5.22-5.05 (*m*, 3 H, CHCH=CH₂), 3.84 (*s*, 3 H, OCH₃), 3.34 (*s*, 2 H, C(=O)CH₂), 1.54-1.24 (*m*, 4 H, CH₂CH₂CH₃), 0.89 (*t*, *J* = 7.2, 3 H, CH₂CH₂CH₃). The other analytical data are in accordance with **10h**.

(R)-N-(4-Methoxyphenyl)-N-(oct-1-en-3-yl)-2-phenylacetamide (10i)

According to **GP4b**, (*E*)-((*E*)-oct-2-en-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate **9i** (56.9 μ mol, 20.0 mg) was reacted with proton sponge (1 mol%, 0.5 μ mol, 10 μ L of a stock solution with $c = 50.0 \,\mu$ mol/mL in CHCl₃) and the activated catalyst [**PPFIP-(NO**₃)₂]₂ (0.25 mol%, 0.14 μ mol, 23 μ L of a stock solution with $c = 6.0 \,\mu$ mol/mL in CHCl₃, prepared according to **GP3a**) in CHCl₃ at 70 °C for 24 h to yield **10i** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 7/1) as a colorless oil (52.3 μ mol, 18.4 mg, 92%, *ee* = 94%). The enantiomeric excess was determined by HPLC: *Chiracel AD-H*, *n*-hexane/*i*-PrOH (99.2/0.8), 1.1 mL min⁻¹, 250 nm, 23.48 min (minor enantiomer), 27.00 min (major enantiomer).

C₂₃**H**₂₉**NO**₂, **MW**: 351.49 g mol⁻¹. [α]_D²⁰: +15.4 (*c* = 0.44, CHCl₃, sample with *ee* = 94%). ¹**H-NMR** (**300 MHz, CDCl₃**): δ = 7.25-7.14 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.06-7.00 (*m*, 2 H, *o*-C₆*H*₅), 6.95-6.82 (*m*, 4 H, C₆*H*₄OMe), 5.65-5.50 (*m*, 1 H, CHCH=CH₂), 5.22-5.05 (*m*, 3 H, CHCH=CH₂), 3.84 (*s*, 3 H, OCH₃), 3.34 (*s*, 2 H, C(=O)CH₂), 1.56-1.18 (*m*, 8 H, (CH₂)₄CH₃), 0.86 (*t*, *J* = 6.8, 3 H, (CH₂)₄CH₃). ¹³**C-NMR (125 MHz, CDCl₃):** δ = 170.9, 159.2, 137.3, 135.7, 131.9, 131.2, 129.1, 128.2, 126.4, 117.6, 114.1, 57.9, 55.5, 41.9, 32.1, 31.7, 26.0, 22.6, 14.1. **IR (CDCl₃):** \tilde{V} = 2955, 2930, 2858, 1651, 1509, 1454, 1386, 1343, 1248, 1169, 1031, 997, 925, 835, 724, 696, 597. **MS (ESI)** *m/z:* 374.2 (100%, [M+Na]⁺), 352.3 (6%, [M+H]⁺). **HRMS (ESI)** *m/z:* calculated for C₂₃H₂₉NO₂ + Na: 374.2091; found: 374.2097.

(R)-N-(4-Methoxyphenyl)-N-(pent-1-en-3-yl)-2-phenylacetamide (10j)

According to **GP4b**, (*E*)-((*E*)-pent-2-en-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate **9j** (64.6 μ mol, 20.0 mg) was reacted with proton sponge (0.4 mol%, 0.25 μ mol, 10 μ L of a stock solution with *c* = 25.0 μ mol/mL in CHCl₃) and the activated catalyst [**PPFIP-(NO**₃)₂]₂ (0.1 mol%, 0.06 μ mol, 10 μ L of a stock solution with *c* = 6.0 μ mol/mL in CHCl₃, prepared according to **GP3a**) in CHCl₃ at 70 °C for 24 h to yield **10j** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 5/1) as a colorless oil (60.1 μ mol, 18.6 mg, 93%, *ee* = 96%). The enantiomeric excess was determined by HPLC: *Chiracel AS-H*, *n*-hexane/*i*-PrOH (99/1), 1.0 mL min⁻¹, 250 nm, 33.14 min (major enantiomer), 44.14 min (minor enantiomer).

C₂₀**H**₂₃**NO**₂, **MG**: 309.41 g mol⁻¹. [α]_D²⁰: +2.0 (*c* = 0.50, CHCl₃, sample with *ee* = 96%). ¹**H-NMR** (**300 MHz, CDCl**₃): δ = 7.25-7.15 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.07-7.00 (*m*, 2 H, *o*-C₆*H*₅), 6.96-6.82 (*m*, 4 H, C₆*H*₄OMe), 5.63-5.49 (*m*, 1 H, CHCH=CH₂), 5.22-5.02 (*m*, 3 H, CHCH=CH₂), 3.84 (*s*, 3 H, OCH₃), 3.35 (*s*, 2 H, C(=O)CH₂), 1.61-1.33 (*m*, 2 H, CH₂CH₃), 0.90 (*t*, *J* = 7.5, 3 H, CH₂CH₃). ¹³**C-NMR (75 MHz, CDCl**₃): δ = 171.0, 159.2, 137.0, 135.7, 131.9, 131.1, 129.1, 128.2, 126.4, 117.8, 114.1, 59.5, 55.5, 41.8, 25.1, 11.0. **IR (CDCl**₃): \tilde{V} = 2964, 2932, 2875, 1649, 1508, 1454, 1385, 1291, 1247, 1169, 1106, 1032, 996, 927, 838, 752, 724, 595. **MS (EI)** *m/z*: 309.2 (36%, [M]⁺), 294.2 (7%), 280.1 (7%), 241.1 (22%), 224.1 (7%), 218.1 (29%), 191.1 (17%), 175.1 (10%), 162.1 (100%), 149.1 (15%), 134.1 (12%), 123.1 (52%), 108.0 (9%), 91.1 (65%), 77.0 (4%), 69.1 (25%), 41.0 (14%). **HRMS (EI)** *m/z*: calculated for C₂₀H₂₃NO₂: 309.1729; found: 309.1736.

(R)-N-(4-Methoxyphenyl)-N-(4-methylpent-1-en-3-yl)-2-phenylacetamide (10k)

According to **GP4b**, (*E*)-((*E*)-4-methylpent-2-en-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate **9k** (61.8 μ mol, 20.0 mg) was reacted with proton sponge (4 mol%, 2.5 μ mol, 50 μ L of a stock solution with *c* = 50.0 μ mol/mL in CH₂Cl₂) and the activated catalyst **[PPFIP-(NO₃)₂]₂** (1 mol%, 0.6 μ mol,

100 µL of a stock solution with $c = 6.0 \,\mu$ mol/mL in CH₂Cl₂, prepared according to **GP3a**) in CH₂Cl₂ at 50 °C for 48 h to yield **10k** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 7/1) as a colorless oil (59.3 µmol, 19.2 mg, 96%, *ee* = 95%). The enantiomeric excess was determined by HPLC: *Chiracel AD-H*, *n*-hexane/*i*-PrOH (99/1), 1.0 mL min⁻¹, 250 nm, 33.81 min (major enantiomer), 38.72 min (minor enantiomer).

C₂₁**H**₂₅**NO**₂, **MW**: 323.44 g mol⁻¹. [α]_D²⁰: -27.8 (c = 0.50, CHCl₃, sample with ee = 95%). ¹**H-NMR** (**300 MHz, CDCl₃**): $\delta = 7.25-7.13$ (m, 3 H, m-C₆H₅ & p-C₆H₅), 7.06-6.80 (m, 6 H, o-C₆H₅ & C₆H₄OMe), 5.61-5.46 (m, 1 H, CH=CH₂), 5.27-5.07 (m, 2 H, CH=CH₂), 4.63 (pseudo t, J = 10.0, 1 H, NCH), 3.84 (s, 3 H, OCH₃), 3.35 (s, 2 H, C(=O)CH₂), 1.89-1.76 (m, 1 H, CH(CH₃)₂), 1.03 (d, J = 6.7, 3 H, CH(CH₃)₂), 0.79 (d, J = 6.7, 3 H, CH(CH₃)₂). ¹³C-NMR (**125 MHz, CDCl₃**): $\delta = 171.1, 159.1, 136.7, 135.7, 133.0, 132.1, 130.6, 129.1, 128.2, 126.4, 118.6, 114.2, 66.4, 55.5, 42.0, 29.6, 20.2, 20.0.$ **IR (CDCl₃):** $<math>\tilde{V} = 2963, 1651, 1509, 1454, 1383, 1329, 1292, 1248, 1170, 1039, 927, 836, 752, 725, 595.$ **MS (ESI)**<math>m/z: 346.2 (100%, [M+Na]⁺), 324.2 (19%, [M+H]⁺), 242.1 (3%). **HRMS (ESI)** m/z: calculated for C₂₁H₂₅NO₂ + Na: 346.1778; found: 346.1778.

(S)-N-(4-Methoxyphenyl)-2-phenyl-N-(1-phenylallyl)acetamide (10l)

According to **GP4b**, (*E*)-((*E*)-3-phenylprop-2-en-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate **91** (55.9 µmol, 20.0 mg) was reacted with proton sponge (4 mol%, 2.2 µmol, 45 µL of a stock solution with c = 50.0 µmol/mL in CH₂Cl₂) and the activated catalyst [**PPFIP-(NO₃)**₂]₂ (1 mol%, 0.5 µmol, 85 µL of a stock solution with c = 6.0 µmol/mL in CH₂Cl₂, prepared according to **GP3a**) in CH₂Cl₂ at room temperature for 72 h to yield **101** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 4/1) as a colorless oil (52.0 µmol, 18.6 mg, 93%, *ee* = 95%). The enantiomeric excess was determined by HPLC: *Chiracel AD-H*, *n*-hexane/*i*-PrOH (95/5), 1.0 mL min⁻¹, 250 nm, 25.57 min (minor enantiomer), 38.24 min (major enantiomer).

C₂₄**H**₂₃**NO**₂, **MW**: 357.45 g mol⁻¹. [*α*]_D²⁰: +11.7 (*c* = 0.50, CHCl₃, sample with *ee* = 95%). ¹**H-NMR** (**300 MHz, CDCl₃**): δ = 7.26-6.20 (*m*, 15 H, Ar-*H* & NC*H*), 6.05-5.90 (*m*, 1 H, C*H*=CH₂), 5.41-5.24 (*m*, 2 H, CH=CH₂), 3.79 (*s*, 3 H, OCH₃), 3.39 (*s*, 2 H, C(=O)CH₂). ¹³**C-NMR** (**125 MHz, CDCl₃**): δ = 171.0, 159.2, 139.7, 135.5, 135.0, 131.9, 131.7, 129.2, 128.5, 128.3, 128.2, 127.4, 126.5, 119.0, 113.9, 61.3, 55.4, 41.7. **IR** (**CDCl₃**): \tilde{V} = 3061, 3029, 2837, 1650, 1603, 1509, 1454, 1382, 1312,
1293, 1248, 1169, 1075, 1030, 930, 837, 811, 774, 737, 724, 701, 595, 555. **MS (ESI)** *m/z:* 396.1 (1%, [M+K]⁺), 380.2 (100%, [M+Na]⁺), 358.2 (6%, [M+H]⁺). **HRMS (ESI)** *m/z:* calculated for C₂₄H₂₃NO₂ + Na: 380.1621; found: 380.1614.

(S)-N-(4-Methoxyphenyl)-N-(1-(4-nitrophenyl)allyl)-2-phenylacetamide (10m)

According to **GP4b**, (*E*)-((*E*)-3-(4-nitrophenylprop-2-en-1-yl)-*N*-(4-methoxyphenyl)-2phenylacetimidate **9m** (49.7 µmol, 20.0 mg) was reacted with proton sponge (4 mol%, 2.0 µmol, 40 µL of a stock solution with c = 50.0 µmol/mL in CH₂Cl₂) and the activated catalyst [**PPFIP**-(**NO**₃)₂]₂ (1 mol%, 0.5 µmol, 85 µL of a stock solution with c = 6.0 µmol/mL in CH₂Cl₂, prepared according to **GP3a**) in CH₂Cl₂ at room temperature for 72 h to yield **10m** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 4/1) as a colorless oil (47.7 µmol, 19.2 mg, 96%, *ee* = 90%). The enantiomeric excess was determined by HPLC: *Chiracel AD-H*, *n*-hexane/*i*-PrOH (93/7), 1.0 mL min⁻¹, 250 nm, 44.69 min (minor enantiomer), 53.77 min (major enantiomer).

C₂₄**H**₂₂**N**₂**O**₄, **MW**: 402.45 g mol⁻¹. [*α*]_D²⁰: +77.7 (*c* = 0.13, CHCl₃, sample with *ee* = 90%).¹**H-NMR** (**300 MHz, CDCl₃**): δ = 8.14-8.07 (*m*, 2 H, *m*-C₆*H*₄NO₂), 7.41-7.33 (*m*, 2 H, *o*-C₆*H*₄NO₂), 7.27-6.27 (*m*, 10 H, C₆*H*₅ & C₆*H*₄OMe & NC*H*), 6.02-5.87 (*m*, 1 H, C*H*=CH₂), 5.43-5.30 (*m*, 2 H, CH=C*H*₂), 3.81 (*s*, 3 H, OC*H*₃), 3.41 (*s*, 2 H, C(=O)C*H*₂). ¹³**C-NMR (125 MHz, CDCl₃):** δ = 171.3, 159.5, 147.4, 147.1, 135.0, 133.8, 131.6, 131.2, 129.1, 129.0, 128.4, 126.8, 123.5, 120.5, 114.5, 61.5, 55.5, 41.6. **IR** (**CDCl**₃): \tilde{V} = 3029, 2935, 2838, 1653, 1605, 1509, 1378, 1344, 1313, 1294, 1248, 1170, 1108, 1029, 935, 856, 838, 808, 738, 726, 704, 594, 569. **MS (ESI)** *m/z*: 441.1 (1%, [M+K]⁺), 425.2 (100%, [M+Na]⁺), 403.2 (6%, [M+H]⁺). **HRMS (ESI)** *m/z*: calculated for C₂₄H₂₂N₂O₄ + Na: 425.1472; found: 425.1463.

(*R*)-*N*-(3,7-Dimethylocta-1,6-dien-3-yl)-*N*-(4-methoxyphenyl)-2-phenylacetamide (10n)

According to **GP4b**, (*E*)-((*E*)-3,7-dimethylocta-2,6-dien-1-yl)-*N*-(4-methoxyphenyl)-2phenylacetimidate **9n** (53.0 µmol, 20.0 mg) was reacted with proton sponge (4 mol%, 2.1 µmol, 42 µL of a stock solution with c = 50.0 µmol/mL in CH₂Cl₂) and the activated catalyst [**PPFIP**-(**NO**₃)₂]₂ (1 mol%, 0.5 µmol, 85 µL of a stock solution with c = 6.0 µmol/mL in CH₂Cl₂, prepared according to **GP3a**) in CH₂Cl₂ at 50 °C for 48 h to yield **10n** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 12/1) as a colorless oil (51.9 µmol, 19.6 mg, 98%, *ee* = 98%). The enantiomeric excess was determined by HPLC: *Chiracel AD-H*, *n*-hexane/*i*-PrOH (99/1), 1.0 mL min⁻¹, 250 nm, 22.19 min (minor enantiomer), 24.54 min (major enantiomer).

C₂₅**H**₃₁**NO**₂, **MW**: 377.53 g mol⁻¹. [α]_D²⁰: −20.0 (*c* = 0.66, CHCl₃, sample with *ee* = 98%). ¹**H-NMR** (**300 MHz, CDCl₃**): δ = 7.25-7.12 (*m*, 3 H, *m*-C₆*H*₅ & *p*-C₆*H*₅), 7.04-6.79 (*m*, 6 H, *o*-C₆*H*₅ & C₆*H*₄OMe), 6.22 (*dd*, *J* = 17.6, 10.9, 1 H, CH=CH₂), 5.12-4.96 (*m*, 3 H, CH=CH₂ & CH=C(CH₃)₂), 3.84 (*s*, 3 H, OCH₃), 3.26 (*s*, 2 H, C(=O)CH₂), 2.33-2.19 (*m*, 1 H, NC(CH₃)CH₂CH₂), 2.00-1.90 (*m*, 2 H, NC(CH₃)CH₂CH₂), 1.83-1.71 (*m*, 1 H, NC(CH₃)CH₂CH₂), 1.65 (*s*, 3 H, CH=C(CH₃)₂), 1.55 (*s*, 3 H, CH=C(CH₃)₂), 1.17 (*s*, 3 H, NC(CH₃)). ¹³C-NMR (**125 MHz**, **CDCl₃**): δ = 171.2, 159.0, 143.6, 135.9, 134.4, 131.7, 131.6, 131.5, 129.2, 128.1, 126.4, 124.2, 113.99, 113.95, 111.7, 64.0, 55.5, 43.9, 38.5, 25.7, 24.2, 23.4, 17.7. **IR (CDCl₃):** \tilde{V} = 3029, 2968, 2915, 1654, 1508, 1454, 1359, 1289, 1247, 1167, 1105, 1032, 918, 836, 731, 696, 598, 566. **MS (ESI)** *m/z:* 400.2 (100%, [M+Na]⁺), 378.2 (9%, [M+H]⁺), 242.1 (4%). **HRMS (ESI)** *m/z:* calculated for C₂₅H₃₁NO₂ + Na: 400.2247; found: 400.2235.

(S)-N-(Hex-1-en-3-yl)-N-(4-methoxyphenyl)propionamide ((ent)-10o)

According to **GP4b**, (*E*)-((*Z*)-hex-2-en-1-yl)-*N*-(4-methoxyphenyl)propionimidate (**Z**)-90 (76.5 μ mol, 20.0 mg) was reacted with the activated catalyst [**FBIP-OTs-MeCN**] ((3 mol%, 2.3 μ mol, 190 μ L of a

stock solution with $c = 12.0 \,\mu\text{mol/mL}$ in CHCl₃, prepared according to **GP3b**) in CHCl₃ at room temperature for 72 h to yield (*ent*)-100 after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 8/1) as a colorless oil (64.3 μ mol, 16.8 mg, 84%, *ee* = 92%). The enantiomeric excess was determined by HPLC: *Chiracel AD-H*, *n*-hexane/*i*-PrOH (99.4/0.6), 1.0 mL min⁻¹, 250 nm, 24.91 min (major enantiomer), 30.45 min (minor enantiomer).

C₁₆**H**₂₃**NO**₂, **MW**: 261.36 g mol⁻¹. [*α*]_D²⁰: −6.9 (*c* = 0.40, CHCl₃, sample with *ee* = 92%). ¹**H-NMR** (**300 MHz, CDCl**₃): δ = 7.05-6.95 (*m*, 2 H, *o*-C₄*H*₄OMe), 6.93-6.84 (*m*, 2 H, *m*-C₆*H*₄OMe), 5.66-5.51 (*m*, 1 H, CHC*H*=CH₂), 5.24-5.05 (*m*, 3 H, C*H*CH=C*H*₂), 3.83 (*s*, 3 H, OC*H*₃), 1.94 (*qd*, *J* = 7.6, 1.5, 2 H, C(=O)C*H*₂CH₃), 1.56-1.27 (*m*, 4 H, C*H*₂C*H*₂CH₃), 1.00 (*t*, *J* = 7.6, 3 H, C(=O)CH₂C*H*₃), 0.91 (*t*, *J* = 7.0, 3 H, CH₂CH₂C*H*₃). ¹³**C-NMR (125 MHz, CDCl**₃): δ = 173.7, 159.1, 137.5, 132.1, 131.5, 130.9, 117.4, 114.2, 57.3, 55.4, 34.3, 28.3, 19.6, 14.0, 9.6, 8.1. **IR (CDCl**₃): \tilde{V} = 2958, 2935, 2873, 1655, 1509, 1462, 1389, 1291, 1247, 1170, 1034, 924, 835, 805, 757, 588, 530. **MS (EI)** *m/z*: 261.2 (20%, [M]⁺), 246.2 (5%), 232.1 (12%), 218.1 (12%), 204.1 (14%), 188.1 (3%), 179.1 (17%), 162.1 (100%), 148.1 (15%), 134.0 (8%), 123.1 (67%), 113.1 (17%), 92.0 (3%), 77.0 (5%), 65.0 (1%), 57.0 (9%), 41.0 (7%). **HRMS (EI)** *m/z*: calculated for C₁₆H₂₃NO₂: 261.1729; found: 261.1727.

(S)-N-(Hex-1-en-3-yl)-N-phenylpropionamide ((ent)-10p)

According to **GP4b**, (*E*)-((*Z*)-hex-2-en-1-yl)-*N*-phenylpropionimidate (**Z**)-**9p** (86.5 µmol, 20.0 mg) was reacted with the activated catalyst [**FBIP-OTs-MeCN**] ((3 mol%, 2.6 µmol, 215 µL of a stock solution with $c = 12.0 \,\mu\text{mol/mL}$ in CHCl₃, prepared according to **GP3b**) in CHCl₃ at room temperature for 72 h to yield (*ent*)-**10p** after purification by column chromatography on silicagel (petrol ether/ethyl acetate = 8/1) as a colorless oil (73.5 µmol, 17.0 mg, 85%, *ee* = 90%). The enantiomeric excess was determined by HPLC: *Chiracel AS-H*, *n*-hexane/*i*-PrOH (99.5/0.5), 1.0 mL min⁻¹, 250 nm, 10.68 min (major enantiomer), 12.07 min (minor enantiomer).

C₁₅**H**₂₁**NO**, **MW**: 231.33 g mol⁻¹. $[a]_D^{20}$: -3.8 (*c* = 0.24, CHCl₃, sample with *ee* = 90%). ¹**H-NMR** (**300 MHz, CDCl₃**): δ = 7.43-7.32 (*m*, 3 H, Ar-*H*), 7.13-7.06 (*m*; 2 H, Ar-*H*), 5.68-5.52 (*m*, 1 H, CHC*H*=CH₂), 5.25-5.06 (*m*, 3 H, C*H*CH=CH₂), 1.93 (*qd*, *J* = 7.6, 1.5, 2 H, C(=O)CH₂CH₃), 1.60-1.28 (*m*, 4 H, CH₂CH₂CH₃), 1.01 (*t*, *J* = 7.6, 3 H, C(=O)CH₂CH₃), 0.91 (*t*, *J* = 7.2, 3 H, CH₂CH₂CH₃). The other analytical data are in accordance with the literature.^[24]

Removal of Amine Protecting Groups (11, 12, 13)

(R)-N-(4-Methoxyphenyl)-5-phenylpent-1-en-2-amine (11)

According to a literature procedure,^[25] (*R*)-*N*-(4-methoxyphenyl)-*N*-(5-phenylpent-1-en-3-yl)acetamide **10a** (48.5 µmol, 15.0 mg, ee = 98%) was dissolved in dry THF (0.33 mL) and cooled to 0 °C. Then LiEt₃BH (3.1 equiv., 0.15 mmol, 0.15 mL, 1 M in THF) was added dropwise and the mixture was stirred at room temperature for 2 h. Subsequently, saturated aqueous NH₄Cl (4.0 mL), aqueous NaOH (4.0 mL, 1 M) and Et₂O (10 mL) were added. The phases were separated and the aqueous phase was extracted with Et₂O (2 x 10 mL). The combined organic extracts were dried over MgSO₄ and the solvent was removed under reduced pressure to yield **11** as a slightly yellow oil (41.5 µmol, 11.1 mg, 86%). The enantiomeric excess was determined by HPLC: *Chiracel OD-H*, *n*-hexane/*i*-PrOH (98.2/1.8), 0.8 mL, 250 nm, 22.72 min (minor enantiomer), 24.27 min (major enantiomer).

C₁₈**H**₂₁**NO**, **MW**: 267.37 g mol⁻¹. $[α]_D^{20}$: −9.2 (*c* = 0.20, CHCl₃, sample with *ee* = 98%). ¹**H-NMR** (**300 MHz, CDCl₃**): δ = 7.31-7.25 (*m*, 2 H, Ar-*H*), 7.22-7.16 (*m*, 3 H, Ar-*H*), 6.77-6.72 (*m*, 2 H, *o*-C₄*H*₄OMe), 6.56-6.50 (*m*, 2 H, m-C₄*H*₄OMe), 5.76 (*ddd*, *J* = 17.1, 10.3, 6.3, 1 H, CH=CH₂), 5.24-5.12 (*m*, 2 H, CH=CH₂), 3.80-3.74 (*m*, 1 H, NC*H*), 3.74 (*s*, 3 H, OC*H*₃), 2.75 (*t*, *J* = 7.8, 2 H, C₆H₅CH₂CH₂), 1.95-1.85 (*m*, 2 H, C₆H₅CH₂CH₂). The analytical data are in accordance with the literature.^[1]

The absolute configuration of (*R*)-*N*-(4-methoxyphenyl)-5-phenylpent-1-en-2-amine has already been previously determined.^[26] HPLC data and the $[\alpha]_D^{20}$ value were compared to an authentic sample prepared by rearrangement of the corresponding allylic trifluoroacetimidate.^[1]

N-(5-Phenylpent-1-en-3-yl)acetamide

Following a literature procedure,^[1] ceric ammonium nitrate (0.46 mmol, 250.0 mg) was dissolved in H_2O (2 mL) and cooled to 0 °C. A solution of (*rac*)-*N*-(4-methoxyphenyl)-*N*-(5-phenylpent-1-en-3-yl)acetamide **10a** (64.6 µmol, 20.0 mg, *racemic*) in MeCN (2 mL) was added dropwise and the mixture was stirred at room temperature for 12 h. Subsequently, Et₂O (5 mL) was added, the phases were separated and the aqueous phase was extracted with Et₂O (2 x 10 mL). The combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Purification of the residue by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 3/1 + 3% NEt₃) yielded *N*-(5-phenylpent-1-en-3-yl)acetamide as a slightly yellow oil (27.1 µmol, 5.5 mg, 42%).

C₁₃**H**₁₇**NO**, **MW**: 203.28 g mol⁻¹ ¹**H-NMR (300 MHz, CDCl₃):** δ = 7.32-7.25 (*m*, 2 H, Ar-*H*), 7.22-7.15 (*m*, 3 H, Ar-*H*), 5.80 (*ddd*, *J* = 17.3, 10.4, 5.7, 1 H, CH=CH₂), 5.28 (*br*, 1 H, N*H*), 5.21-5.13 (*m*, 2 H, CH=CH₂), 4.59-4.48 (*m*, 1 H, NC*H*), 2.67 (*t*, *J* = 7.9, 2 H, C₆H₅CH₂CH₂), 1.97 (*s*, 3 H, C(=O)CH₃), 1.94-1.75 (*m*, 2 H, C₆H₅CH₂CH₂). ¹³**C-NMR (75 MHz, CDCl₃):** δ = 169.5, 141.7, 138.2, 128.6, 128.5, 126.2, 115.4, 51.4, 36.55, 32.3, 23.6. **IR (in CDCl₃):** $\tilde{\nu}$ = 3272, 2254, 1965, 1650, 1550, 1373, 903, 722, 650. **MS (ESI)** *m/z*: 226.1 (100%, [M+Na]⁺), 204.1 (83%, [M+H]⁺), 162.1 (10%), 145.10 (14%). **HRMS (ESI)** *m/z*: calculated for C₁₃H₁₇NO + H: 204.1370; found: 204.1383.

(R)-N-(Hex-1-en-3-yl)-2-phenylacetamide (12)

Following a literature procedure,^[1] ceric ammonium nitrate (3.64 mmol, 1.99 g) was dissolved in H₂O (15 mL) and cooled to 0 °C. A solution of (*R*)-*N*-(hex-1-en-3-yl)-*N*-(4-methoxyphenyl)-2-phenylacetamide **10h** (0.52 mmol, 170.0 mg, *ee* = 96%) in MeCN (15 mL) was added dropwise and the mixture was stirred at room temperature for 2.5 h. Subsequently, Et₂O (30 mL) was added, the phases were separated and the aqueous phase was extracted with Et₂O (2 x 30 mL). The combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Purification of the residue by column chromatography on deactivated silicagel (petrol ether/ethyl acetate = 7/1 + 3% NEt₃) yielded **12** as a white solid (0.18 mmol, 39.5 mg, 35%).

C₁₄**H**₁₉**NO**, **MW**: 217.31 g mol⁻¹. **Mp**: 69.2-70.2 °C. $[\alpha]_D^{20}$: -9.3 (*c* = 0.42, CHCl₃). ¹**H-NMR** (**300 MHz, CDCl₃**): δ = 7.40-7.25 (*m*, 5 H, C₆*H*₅), 5.74-5.61 (*m*, 1 H, C*H*=CH₂), 5.22-5.11 (*bs*, 1 H, N*H*), 5.04-4.94 (*m*, 2 H, CH=CH₂), 4.51-4.39 (*m*, 1 H, C*H*NH), 3.60 (*s*, 2 H, C₆H₅CH₂), 1.50-1.17 (*m*, 4 H, $CH_2CH_2CH_3$), 0.86 (*t*, J = 7.2, 3 H, $CH_2CH_2CH_3$). ¹³C-NMR (125 MHz, CDCl₃): $\delta = 170.2$, 138.3, 135.0, 129.5, 129.1, 127.4, 114.4, 51.0, 44.1, 36.9, 18.8, 13.8. IR (CDCl₃): $\tilde{\nu} = 3286$, 2957, 2931, 1647, 1542, 921, 703. MS (ESI) *m/z*: 240.1 (100%, [M+Na]⁺), 226.9 (3%), 218.2 (9%, [M+H]⁺), 136.1 (1%). HRMS (ESI) *m/z*: calculated for C₁₄H₁₉NO + Na: 240.1359; found: 240.1369.

(*R*)-Hex-1-en-3-amine (13)

(*R*)-N-(Hex-1-en-3-yl)-2-phenylacetamide **12** (92.0 μ mol, 20.0 mg) was suspended in sodium phosphate buffer (1.0 mL, pH = 7.5, 1 M) and PGA (*Penicillin G Amidase* from *Escherichia coli*) (ammonium sulfate suspension, \geq 10 units/mg protein) (30 μ L) and toluene (0.1 mL) were added. The flask was closed and the mixture was stirred at 38 °C for 48 h. Subsequently, H₂O (5 mL) and CH₂Cl₂ (5 mL) were added, the phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2 x 5 mL). The combined organic phases were dried over Na₂SO₄ and the solvent removed under reduced pressure. Mesitylene (10 μ L) was added to the crude product as an internal standard followed by CDCl₃ (1 mL) to determine conversion and yield by ¹H-NMR. The crude product was afterwards dissolved in CH₂Cl₂ (10 mL) and extracted with aqueous HCl (3 x 5 mL, 1 M). The pH value of the combined aqueous phases were extracted by CH₂Cl₂ (3 x 10 mL). The combined organic phases were dried over Na₂SO₄ and the solvent (2 M) and the combined aqueous phases were extracted by CH₂Cl₂ (3 x 10 mL). The combined organic phases were dried over Na₂SO₄ and the solvent sequence of the combined aqueous phases were extracted by CH₂Cl₂ (3 x 10 mL). The combined organic phases were dried over Na₂SO₄ and the solvent removed under reduced pressure to yield **13** as a colorless oil (88.7 μ mol, 8.8 mg, 96%).

C₆H₁₃N, MW: 99.18 g mol⁻¹. ¹**H-NMR (300 MHz, CDCl₃):** $\delta = 5.84-5.70$ (*m*, 1 H, CH=CH₂), 5.13-4.95 (*m*, 2 H, CH=CH₂), 3.32-3.22 (*m*, 1 H, NH₂CH), 1.44-1.30 (*m*, 4 H, CH₂CH₂CH₃), 1.25 (*bs*, 2 H, NH₂), 0.91 (*t*, *J* = 7.1, 3 H, CH₂CH₂CH₃). The analytical data are in accordance with the literature.^[27]

The enantiomeric excess was determinated by HPLC after tosyl protection of **13**:^[28] *Chiracel OD-H*, *n*-hexane/*i*-PrOH (94/6), 1.0 mL, 250 nm, 8.42 min (major enantiomer), 10.10 min (minor enantiomer).

C₁₂**H**₁₇**NO**₂**S**, **MW**: 253.36 g mol⁻¹. **mp**: 55.3-56.3 °C (sample with *ee* = 97). $[a]_D^{20}$: −15.1 (c = 0.42, CHCl₃, sample with *ee* = 97%). ¹**H**-**NMR (300 MHz, CDCl₃):** δ = 7.73 (*d*, *J* = 8.4, 2 H, *o*-C₆*H*₄CH₃), 7.27 (*d*, *J* = 8.4, 2 H, *m*-C₆*H*₄CH₃), 5.60-5.47 (*m*, 1 H, C*H*=CH₂), 5.02-4.92 (*m*, 2 H, CH=C*H*₂), 4.41 (*bd*, *J* = 8.0, 1 H, N*H*), 3.82-3.70 (*m*, 1 H, NC*H*), 2.42 (*s*, 3 H, C₆H₄CH₃), 1.49-1.38 (*m*, 2 H,

 $CH_2CH_2CH_3$), 1.38-1.17 (*m*, 2 H, $CH_2CH_2CH_3$), 0.83 (*t*, *J* = 7.2, 3 H, $CH_2CH_2CH_3$). The analytical data are in accordance with the literature.^[29]

The absolute configuration of *N*-(hex-1-en-3-yl)-4-methylbenzenesulfonamide has already been previously determined.^[30] HPLC data and the $[\alpha]_D^{20}$ value were compared to an authentic sample prepared by rearrangement of the corresponding allylic carbamate.^[31]

NMR Spectra of New Compounds

(*E*)-1-(1H-Benzo[d][1,2,3]triazol-1-yl)-*N*-(4-nitrophenyl)-2-phenylethan-1-imine (8f)

((E)-5-Phenylpent-2-en-1-yl)-N-(4-methoxyphenyl)acetimidate (9a)

((E)-Pent-2-en-1-yl)-N-(4-methoxyphenyl)acetimidate (9b)

((E)-Hex-2-en-1-yl)-N-(4-methoxyphenyl)acetimidate (9c)

((E)-Oct-2-en-1-yl)-N-(4-methoxyphenyl)acetimidate (9d)

((E)-Hex-2-en-1-yl)-N-(4-nitrophenyl)acetimidate (9e)

((Z)-Hex-2-en-1-yl)-N-(4-nitrophenyl)acetimidate ((Z)-9e)

((E)-Hex-2-en-1-yl)-N-(4-nitrophenyl)-2-phenylacetimidate (9f)

((Z)-Hex-2-en-1-yl)-N-(4-nitrophenyl)-2-phenylacetimidate ((Z)-9f)

((E)-Hex-2-en-1-yl)-N-phenyl-2-phenylacetimidate (9g)

((E)-Hex-2-en-1-yl)-N-(4-methoxyphenyl)-2-phenylacetimidate (9h)

((Z)-Hex-2-en-1-yl)-N-(4-methoxyphenyl)-2-phenylacetimidate ((Z))-9h

((E)-Oct-2-en-1-yl)-N-(4-methoxyphenyl)-2-phenylacetimidate (9i)

((E)-Pent-2-en-1-yl)-N-(4-methoxyphenyl)-2-phenylacetimidate (9j)

((E)-4-Methylpent-2-en-1-yl)-N-(4-methoxyphenyl)-2-phenylacetimidate (9k)

((*E*)-3-Phenylprop-2-en-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate (9l)

((*E*)-3-(4-Nitrophenylprop-2-en-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate (9m)

((*E*)-3,7-Dimethylocta-2,6-dien-1-yl)-*N*-(4-methoxyphenyl)-2-phenylacetimidate (9n)

(R)-N-(4-Methoxyphenyl)-N-(5-phenylpent-1-en-3-yl)acetamide (10a)

(R)-N-(4-Methoxyphenyl)-N-(pent-1-en-3-yl)acetamide (10b)

(R)-N-(Hex-1-en-3-yl)-N-(4-methoxyphenyl)acetamide (10c)

(R)-N-(4-Methoxyphenyl)-N-(oct-1-en-3-yl)acetamide (10d)

N-(Hex-1-en-3-yl)-N-(4-nitrophenyl)acetamide (10e)

N-(Hex-1-en-3-yl)-N-(4-nitrophenyl)-2-phenylacetamide (10f)

(R)-N-(Hex-1-en-3-yl)-N,2-diphenylacetamide (10g)

N-(Hex-1-en-3-yl)-N-(4-methoxyphenyl)-2-phenylacetamide (10h)

(R)-N-(4-Methoxyphenyl)-N-(oct-1-en-3-yl)-2-phenylacetamide(10i)

(R)-N-(4-Methoxyphenyl)-N-(pent-1-en-3-yl)-2-phenylacetamide (10j)

(R)-N-(4-Methoxyphenyl)-N-(4-methylpent-1-en-3-yl)-2-phenylacetamide (10k)

(S)-N-(4-Methoxyphenyl)-2-phenyl-N-(1-phenylallyl)acetamide (10l)

(S)-N-(4-Methoxyphenyl)-N-(1-(4-nitrophenyl)allyl)-2-phenylacetamide (10m)

(*R*)-*N*-(3,7-Dimethylocta-1,6-dien-3-yl)-*N*-(4-methoxyphenyl)-2-phenylacetamide (10n)

(S)-N-(Hex-1-en-3-yl)-N-(4-methoxyphenyl)propionamide ((ent)-100)

N-(5-Phenylpent-1-en-3-yl)acetamide

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

(R)-N-(Hex-1-en-3-yl)-2-phenylacetamide (12)

HPLC Spectra of compounds 10, 11, 13

(R)-N-(4-Methoxyphenyl)-N-(5-phenylpent-1-en-3-yl)acetamide (10a)

Chiralpak AD-H nhexane/iPrOH (98/2), 1.0 ml/min, 250 nm

Retention Time	Height	Area	Area Percent
25.34	35455	1552585	0.82
34.04	2054975	187006542	99.18
		3	
Totals			
	2090430	188559127	100.00

UV Results			
Retention Time	Height	Area	Area %
25.60	251811	13821255	49.97
34.08	197911	13835743	50.03
Totals			
	449722	27656998	100.00

(R)-N-(4-Methoxyphenyl)-N-(pent-1-en-3-yl)acetamide (10b)

Compound:

Chiralpak AD-H nhexane/iPrOH (99.5/0.5), 2.0 ml/min, 250 nm

UV Results Area Percent **Retention Time** Height Area 21.98 974086 119287346 98.06 28.96 26722 2363281 1.94 Totals 1000808 121650627 100.00

UV Results			
Retention Time	Height	Area	Area %
23.19	454778	40389187	50.31
27.86	332660	39897877	49.69
Totals			
	787438	80287064	100.00

(R)-N-(Hex-1-en-3-yl)-N-(4-methoxyphenyl)acetamide (10c)

Chiralpak AD-H nhexane/iPrOH (99.2/0.8), 1.0 ml/min, 250 nm

UV Results			
Retention Time	Height	Area	Area %
30.49	1026674	74237332	49.98
34.95	705920	74285214	50.02
Totals			
	1732594	148522546	100.00

(R)-N-(4-Methoxyphenyl)-N-(oct-1-en-3-yl)acetamide (10d)

10d

UV Results Height 55772 Retention Time Area Area Percent 25.33 3230889 3.92 29.71 724026 79275372 96.08 Totals 779798 82506261 100.00

UV Results			
Retention Time	Height	Area	Area %
24.65	484325	30652002	50.01
31.10	394550	30644569	49.99
Totals			
	878875	61296571	100.00

(R)-N-(Hex-1-en-3-yl)-N-(4-nitrophenyl)acetamide (10e)

Compound:

 Column:
 Chiralpak AS-H

 Method:
 nhexane/iPrOH (96/4), 1.0 ml/min, 250 nm

2441199

439331273

100.00

Racemic reference:

UV Results

Retention Time	Height	Area	Area %
42.00	1200391	139695121	50.13
54.02	927212	138978320	49.87
Totals			
	2127603	278673441	100.00

(S)-N-(Hex-1-en-3-yl)-N-(4-nitrophenyl)acetamide ((ent)-10e)

(ent)-10e

UV Results			
Retention Time	Height	Area	Area %
42.00	1200391	139695121	50.13
54.02	927212	138978320	49.87
Totals			
	2127603	278673441	100.00

(R)-N-(Hex-1-en-3-yl)-N-(4-nitrophenyl)-2-phenylacetamide (10f)

<u>Column</u>: Chiralpak AS-H <u>Method</u>: nhexane/iPrOH (99/1), 0.8 ml/min, 250 nm

UV Results Retention Time Height Area Percent Area 69.13 77.19 104507 14579767 2.56 97.44 1414643 555387762 Tota1s 1519150 569967529 100.00

Racemic reference:

UV Results

Retention Time	Height	Area	Area %
63.60	680593	159083815	49.64
72.67	517449	161397341	50.36
Totals			
	1198042	320481156	100.00

(S)-N-(Hex-1-en-3-yl)-N-(4-nitrophenyl)-2-phenylacetamide ((ent)-10f)

Retention Time	Height	Area	Area Percent
60.26	479409	112201312	97.27
71.24	12821	3153737	2.73
Totals			
	492230	115355049	100.00

UV	Results
· ·	1000000000

Retention Time	Height	Area	Area %
63.60	680593	159083815	49.64
72.67	517449	161397341	50.36
Totals			
	1198042	320481156	100.00

(R)-N-(Hex-1-en-3-yl)-N,2-diphenylacetamide (10g)

Column: Method:

Chiralpak OD-H nhexane/iPrOH (99.5/0.5), 1.0 ml/min, 250 nm

UV Results			
Retention Time	Height	Area	Area Percent
14.39	75203	1342038	1.44
15.10	3079112	91638905	98.56
Totals			
	3154315	92980943	100.00

UV	Results

Retention Time	Height	Area	Area %
14.80	231315	5854389	49.75
15.99	206957	5913760	50.25
Totals			
	438272	11768149	100.00

(R)-N-(Hex-1-en-3-yl)-N-(4-methoxyphenyl)-2-phenylacetamide (10h)

<u>Column</u>: <u>Method:</u>

Chiralpak OD-H nhexane/iPrOH (99.5/0.5), 1.0 ml/min, 250 nm

UV Results			
Retention Time	Height	Area	Area Percent
20.83	28968	955845	1.53
22.12	1099892	61579853	98.47
Totals			
	1128860	62535698	100.00

Racemic reference:

UV Results

Retention Time	Height	Area	Area %
21.98	2186734	145000785	49.24
25.31	1548836	149497607	50.76
Totals			
	3735570	294498392	100.00

(S)-N-(Hex-1-en-3-yl)-N-(4-methoxyphenyl)-2-phenylacetamide ((ent)-10h)

Totals	3914917	568782435	100.00
39.67	3675864	537606759	94.52
47.24	239053	31175676	5.48

UV Results			
Retention Time	Height	Area	Area %
39.56	1421333	138510923	47.73
45.26	1038226	151702304	52.27
Totals			
	2459559	290213227	100.00

(R)-N-(4-Methoxyphenyl)-N-(oct-1-en-3-yl)-2-phenylacetamide(10i)

Column:Chiralpak AD-HMethod:nhexane/iPrOH (99.2/0.8), 1.1 ml/min, 250 nm

UV Results	
------------	--

Retention Time	Height	Area	Area %
23.11	273744	19823003	50.28
27.20	182601	19598799	49.72
Totals			
	456345	39421802	100.00

(R)-N-(4-Methoxyphenyl)-N-(pent-1-en-3-yl)-2-phenylacetamide (10j)

44.14	24278	2484027	1.95
Totals			
	1013848	127217482	100.00

UV Results			
Retention Time	Height	Area	Area %
36.12	164528	14252824	49.97
45.11	123511	14267714	50.03
Totais			
	288039	28520538	100.00

(R)-N-(4-Methoxyphenyl)-N-(4-methylpent-1-en-3-yl)-2-phenylacetamide (10k)

Column:Chiralpak AD-HMethod:nhexane/iPrOH (99/1), 1.0 ml/min, 250 nm

UV Results			
Retention Time	Height	Area	Area Percent
33.81	459368	38536637	97.40
38.72	12866	1026833	2.60
Totals			
	472234	39563470	100.00

Racemic reference:

UV Results

Retention Time	Height	Area	Area %
32.41	441541	34898976	49.90
36.95	381735	35038954	50.10
Totals			
	823276	69937930	100.00

(S)-N-(4-Methoxyphenyl)-2-phenyl-N-(1-phenylallyl)acetamide (10l)

<u>Column</u>: <u>Method:</u>

Chiralpak AD-H nhexane/iPrOH (95/5), 1.0 ml/min, 250 nm

5226397

503733901

100.00

UV Results			
Retention Time	Height	Area	Area %
25.11	497583	28868095	50.04
38.04	329004	28825049	49.96
Totals			
	826587	57693144	100.00

(S)-N-(4-Methoxyphenyl)-N-(1-(4-nitrophenyl)allyl)-2-phenylacetamide (10m)

Retention Time	Height	Area	Area %
43.76	2571144	270733009	50.00
52.72	1978847	270723678	50.00
Totals			
	4549991	541456687	100.00

(*R*)-*N*-(3,7-Dimethylocta-1,6-dien-3-yl)-*N*-(4-methoxyphenyl)-2-phenylacetamide (10n)

Compound: MeO MeV, J 10n

Column:Chiralpak AD-HMethod:nhexane/iPrOH (99/1), 1.0 ml/min, 250 nm

	2.02.1	211/012		
1	Totals			
		2223621	177333987	100.00
	20			

UV Results			
Retention Time	Height	Area	Area %
22.00	817422	40223516	49.93
24.71	686481	40338059	50.07
Totals			
	1503903	80561575	100.00

(S)-N-(Hex-1-en-3-yl)-N-(4-methoxyphenyl)propionamide ((ent)-10o)

(6///) 10

Column: Method: Chiralpak AD-H nhexane/iPrOH (99.4/0.6), 1.0 ml/min, 250 nm

Racemic reference:

.....

.

Retention Time	Height	Area	Area %
26.44	748825	45718453	50.01
31.70	491649	45698024	49.99
Totals			
	1240474	91416477	100.00

(S)-N-(Hex-1-en-3-yl)-N-phenylpropionamide ((ent)-10p)

<u>Compound:</u> (*ent*)-10p

2676241

95597862

100.00

UV Results			
Retention Time	Height	Area	Area %
10.78	1274790	25202491	50.29
11.66	1060709	24913499	49.71
Totals			
	2335499	50115990	100.00

(R)-N-(4-Methoxyphenyl)-5-phenylpent-1-en-2-amine (11)

UV Results			
Retention Time	Height	Area	Area %
23.77	2505165	107305928	49.34
25.27	2271522	110191186	50.66
Totals			
	4776687	217497114	100.00

Reference:

UV Results			
Retention Time	Height	Area	Area %
21.39	95660	3085069	2.50
22.90	3113848	120438442	97.50
Totals			
	3209508	123523511	100.00

(R)-Hex-1-en-3-amine (13) via Tosyl Protection

UV Results			
Retention Time	Height	Area	Area %
9.00	1831669	39100791	49.84
10.37	1563818	39344027	50.16
Totals			
	3395487	78444818	100.00

Reference:

UV Results			
Retention Time	Height	Area	Area %
8.95	5520796	189997385	94.94
11.00	437950	10133548	5.06
Totals			
	5958746	200130933	100.00

References

- [1] D. F. Fischer, A. Barakat, Z.-q. Xin, M. E. Weiss and R. Peters, *Chem. Eur. J.*, 2009, **15**, 8722.
- [2] M. E. Weiss, D. F. Fischer, Z.-q. Xin, S. Jautze, W. B. Schweizer and R. Peters, *Angew. Chem. Int Ed.*, 2006, **45**, 5694.
- [3] D. F. Fischer, Z.-q. Xin and R. Peters, Angew. Chem. Int. Ed., 2007, 46, 7704.
- [4] S. Jautze, P. Seiler and R. Peters, *Angew. Chem. Int. Ed.*, 2007, 46, 1260.
- [5] M. Weiss, W. Frey and R. Peters, *Organometallics*, 2012, **31**, 6365.
- [6] M. Kitsunai, K. Miyajima, Y. Mikami, S. Kim, A. Hirasawa and K. Chiba, *Biosci. Biotechnol. Biochem.*, 2008, **72**, 3314.
- [7] K. Heyns and W. von Bebenburg, *Chem. Ber.*, 1953, **86**, 278.
- [8] J. R. Dunetz, Y. Xiang, A. Baldwin and J. Ringling, Org. Lett., 2011, 13, 5048.
- [9] A. R. Katritzky, A. E. Hayden, K. Kirichenko, P. Pelphrey and Y. Ji, *J. Org. Chem.*, 2004, **69**, 5108.
- [10] R. F. Cunico and R. K. Pandey, J. Org. Chem., 2005, 70, 5344.
- [11] S. E. Patterson, L. Janda and L. Strekowski, J. Heterocycl. Chem., 1992, 29, 703.
- [12] N. Ototake, M. Nakamura, Y. Dobashi, H. Fukaya and O. Kitagawa, *Chem. Eur. J.*, 2009, **15**, 5090.
- [13] T. D. W. Claridge, S. G. Davies, J. A. Lee, R. L. Nicholson, P. M. Roberts, A. J. Russell, A. D. Smith and S. M. Toms, *Org. Lett.*, 2008, 10, 5437.
- [14] M. T. Nunez and V. S. Martin, J. Org. Chem., 1990, 55, 1928.
- [15] E. Piers, G. L. Jung and E. H. Ruediger, *Can. J. Chem.*, 1987, **65**, 670.
- [16] A. W. van Zijl, L. A. Arnold, A. J. Minnaard and B. L. Feringa, *Adv. Synth. Catal.*, 2004, 346, 413.
- [17] Z.-J. Quan, H.-D. Xia, Z. Zhang, Y.-X. Da and X.-C. Wang, *Tetrahedron*, 2013, **69**, 8368.
- [18] C. Spiteri and J. Moses, *Synlett*, 2012, 1546.
- [19] R. Arora, S. Paul and R. Gupta, Can. J. Chem., 2005, 83, 1137.
- [20] X. Li, Z. Li, H. Deng and X. Zhou, *Tetrahedron Lett.*, 2013, 54, 2212.
- [21] C. A. Goodman, J. B. Eagles, L. Rudahindwa, C. G. Hamaker and S. R. Hitchcock, *Synth. Commun.*, 2013, **43**, 2155.

- [22] X. Fang, R. Jackstell and M. Beller, *Angew. Chem.*, 2013, **125**, 14339.
- [23] P. Metz and C. Mues, *Tetrahedron*, 1988, 44, 6841.
- [24] P. Metz and C. Mues, A. Schoop, *Tetrahedron*, 1992, **48**, 1071.
- [25] H. Tanaka and K. Ogasawara, *Tetrahedron Lett.*, 2002, 43, 4417.
- [26] L. E. Overman, C. E. Owen, M. M. Pavan and C. J. Richards, Org. Lett., 2003, 5, 1809.
- [27] C. Grison, A. Thomas, F. Coutrot and P. Coutrot, *Tetrahedron*, 2003, **59**, 2101.
- [28] S. Tsushima, Y. Yamada, T. Onami, K. Oshima, M. O. Chaney, N. D. Jones and J. K. Swartzendruber, *Bull. Chem. Soc. Jpn.*, 1989, **62**, 1167.
- [29] D. Xing and D. Yang, Org. Lett., 2010, 12, 1068.
- [30] A. Farwick, J. U. Engelhart, O. Tverskoy, C. Welter, Q. A. Umlauf née Stang, F. Rominger, W. J. Kerr and G. Helmchen, *Adv. Synth. Catal.*, 2011, **353**, 349.
- [31] J. M. Bauer, W. Frey and R. Peters, Angew. Chem. Int. Ed., 2014, 53, 7634.