## A mitochondria-targeted fluorescence probe for the detection of endogenous SO<sub>2</sub> derivatives in living cells

Ye-Hao Yan<sup>a</sup>, Qiu-RongWu<sup>b</sup>, Qiao-Ling Che<sup>a</sup>, Man-Man Ding<sup>a</sup>, Min Xu<sup>a</sup>, Jun-Ying Miao<sup>b</sup>, Bao-Xiang Zhao<sup>a\*</sup>, Zhao-Min Lin<sup>c\*</sup>

<sup>a</sup>Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China <sup>b</sup>Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, P.R. China <sup>c</sup>Institute of Medical Science, the Second Hospital of Shandong University, Jinan 250033, P.R. China

Scheme S1 Synthetic route of Acceptor.

Fig. S1-4 IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HR-MS spectra of probe ZACA.

Fig. S5 <sup>1</sup>H NMR of Acceptor.

**Fig. S6** The overlap between the emission band of Donor and the absorbance band of Acceptor.

Fig. S7 The fluorescence spectra of Acceptor, Donor and probe ZACA.

Fig. S8-9 HR-MS and <sup>1</sup>H NMR of the mixture of ZACA and HSO<sub>3</sub><sup>-</sup>/SO<sub>3</sub><sup>2-</sup>.

**Fig. S10** The quantum yield and CIE chromaticity diagram of Donor, Acceptor and probe.

Fig. S11 Uv-vis Spectra of ZACA in presence of various species.

Fig. S12 The pH dependence of the ZACA toward HSO<sub>3</sub><sup>-</sup>/SO<sub>3</sub><sup>2-</sup>.

Fig. S13 The toxicity analysis of ZACA for Hela cells.

Fig. S14 The photo-stability analysis of ZACA in HeLa cells.

**Table S1** The comparison of probe ZACA with other probes.



Scheme S1 Synthesis route of Acceptor

*p*-Dimethylaminobenzaldehyde and benzoindole derivative were dissolved into EtOH (20 mL) under the catalysis of piperidine and kept refluxing 6 h. Then, purification by column chromatography (DCM: MeOH= 15:1) gave the product in 54% yield. The Acceptor was confirmed by <sup>1</sup>H NMR (**Fig. S5**).

1. Energy transfer efficiency was obtained based on the following equation:

 $E = 1 - F_{DA}/F_D$ 

In the equation, E represents the energy transfer efficiency in probe ZACA FRET system.  $F_D$ : Fluorescence intensity of the Donor alone.  $F_{DA}$ : Fluorescence intensity of the donor in this FRET system.

2. Detection limit =  $3\sigma/K$ 

Wherein,  $\sigma$  = the standard deviation of I<sub>490</sub>/I<sub>620</sub> of blank testing solution without HSO<sub>3</sub><sup>-</sup>/SO<sub>3</sub><sup>2-</sup>, and K = the slope of the linear calibration.



Fig. S1 IR of probe ZACA.



Fig. S2 <sup>1</sup>H NMR of probe ZACA (300 MHz, DMSO- $d_6$ ).



Fig. S3  $^{13}$ C NMR of probe ZACA (100 MHz, DMSO- $d_6$ ).



Fig. S4 HR-MS of probe ZACA.



Fig. S5 <sup>1</sup>H NMR of Acceptor (400 MHz, DMSO- $d_6$ ).



**Fig. S6** The overlap between the emission band of Donor and the absorbance band of Acceptor.



**Fig. S7** The fluorescence spectra of Acceptor, Donor and probe ZACA. (5  $\mu$ M, DMSO: PBS = 3:7, pH = 7.4, Excitation wavelength: 420 nm, slit: 5/5, speed: 1200 nm/s).



Fig. S8 HR-MS of the mixture of probe ZACA and HSO<sub>3</sub><sup>-</sup>/SO<sup>2-</sup><sub>3</sub>.



Fig. S9 <sup>1</sup>H NMR of the mixture of probe ZACA and HSO<sub>3</sub><sup>-</sup>/SO<sub>3</sub><sup>2-</sup>.



**Fig. S10** The quantum yield and CIE chromaticity diagram of Donor, Acceptor and the probe.

(A) The absolute quantum yield of Donor, Acceptor and the probe in DCM solution, wherein Donor 2 is the donor moiety in probe ZACA molecule, Acceptor 2 is the acceptor moiety in probe ZACA molecule. (Excitation range: 405-435 nm) (B) The CIE chromaticity diagram of Donor, Acceptor and probe ZACA.



**Fig. S11** The Uv-vis spectra of ZACA (10  $\mu$ M) in presence of various species ( blank, <sup>1</sup>O<sub>2</sub>, Fe<sup>2+</sup>, H<sub>2</sub>O<sub>2</sub>, HClO, HO<sup>-</sup>, OH<sup>-</sup>, *t*-BuOOH, NO<sub>3</sub><sup>-</sup>, CN<sup>-</sup>, GSH, Fe<sup>3+</sup>, Cys, H<sub>2</sub>S, Ca<sup>2+</sup>, Hg<sup>2+</sup>, Pb<sup>2+</sup>, and 1.2 equiv. HSO<sub>3</sub><sup>-/</sup>SO<sub>3</sub><sup>2-</sup>). (DMSO: PBS = 3:7, pH = 7.4).



**Fig. S12** The pH dependence of the ZACA (5  $\mu$ M) toward HSO<sub>3</sub><sup>-/</sup>SO<sub>3</sub><sup>2-</sup> (1.2 equiv.). (DMSO: PBS = 3:7, excitation wavelength: 420 nm, slit: 5/5, speed: 1200 nm/min).



Fig. S13 The toxicity analysis of ZACA for Hela cells.

Hela cells were cultivated with Dulbecco's modified Eagle's medium (DMEM) which contains supplement of 10% FBS (Fetal Bovine Serum) in the carbon dioxide incubator with an atmosphere of 5% CO<sub>2</sub> and 95% air at 37°C. HeLa cells were placed to a 96-well plate in the concentration of 40000 per mL for 24 h, and then incubated with probe ZACA (0, 0.2, 1, 5  $\mu$ M) for 6 h, respectively. After that SRB assay was conducted to measure the viability of cells.



**Fig. S14** The photo-stability analysis of ZACA in HeLa cells.HeLa cells were pretreated with ZACA (1  $\mu$ M) for 1 h. **(A)** First line: fluorescence images at the green channel (405-555 nm). Second line: fluorescence images at the red channel (560-700 nm). Third line: images at bright field. Forth line: merged images of the first and second lines. **(B)** The relative ratio of fluorescence intensity.

| Probe                                                                                                                          | Response<br>ions                                     | ratiometric | Detection<br>limit | Targeted<br>subcellar | Reference |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------|--------------------|-----------------------|-----------|
| П К СНО                                                                                                                        | HSO <sub>3</sub> -                                   | No          | 76 nM              | No                    | S1        |
|                                                                                                                                | HSO3-                                                | Yes         | 0.15 μΜ            | Mitochondria          | S2        |
| $\sim \mathbb{N}^{\mathbb{N}} \mathbb{N}^{\mathbb{N}} \mathbb{N}^{\mathbb{N}} \mathbb{N}^{\mathbb{N}} \mathbb{N}^{\mathbb{N}}$ | HSO <sub>3</sub> -                                   | Yes         | 87 nM              | No                    | S3        |
| 100,30-0-40                                                                                                                    | HSO3 <sup>-</sup><br>/SO3 <sup>2-</sup>              | Yes         | 0.24 µM            | No                    | S4        |
|                                                                                                                                | HSO3 <sup>-</sup><br>/SO3 <sup>2-</sup>              | Yes         | 0.1 μΜ             | Mitochondria          | S5        |
| N C C C HN                                                                                                                     | HSO <sub>3</sub> -                                   | Yes         | 53 nM              | No                    | S6        |
|                                                                                                                                | HSO <sub>3</sub> -                                   | Yes         | 45 nM              | No                    | S7        |
|                                                                                                                                | HSO <sub>3</sub> -<br>/SO <sub>3</sub> <sup>2-</sup> | Yes         | 15.6 nM            | Mitochondria          | This work |

## Table S1 Comparison of probe ZACA to other probes:

## Reference

[1] L.J. Zhang, Z.Y. Wang, X.J. Cao, J.T. Liu and B.X. Zhao, Sens. Actuators B 2016, **236**, 741-748.

[2] Y. Liu, K. Li, M.Y. Wu, Y.H. Liu, Y.M. Xie and X.Q. Yu, Chem. Commun. 2015, **51**, 10236-10239.

[3] M.X. Li, W.Y. Feng, H.Y. Zhang and G.Q. Feng, Sens. Actuators B 2017, 243, 51-58.

[4] X.Y. Zhu, L.M. Zhu, H.W. Liu, X.X. Hu, R.Z. Peng, J. Zhang, X.B. Zhang and W.H. Tan, Anal. Chim. Acta 2016, 937, 136-142.

[5] D.P. Li, Z.Y. Wang, X.J. Cao, J. Cui, X. Wang, H.Z. Cui, J.Y. Miao and B.X. Zhao, Chem. Commun. 2016, **52**, 2760-2763.

[6] X. Dai, T. Zhang, Z.F. Du, X.J. Cao, M.Y. Chen, S.W. Hu, J.Y. Miao and B.X. Zhao, Anal. Chim. Acta 2015, 888, 138-145.

[7] W.L. Wu, Z.Y. Wang, X. Dai, J.Y. Miao and B.X. Zhao, Sci. Report 2016, 6, 25315.