Electronic Supplementary Information (ESI)

Extracellular pH-Manipulated In Situ Reconfiguration of Aptamer Functionalized DNA Monomer Enable Specifically Improved Affinity, Detection and Drug Delivery

Shanzi Zou, Yanli Lei,^{*} Wenjie Ma, Biao Chen, Hong Cheng, Ruichen Jia, Zenghui Li, Xiaoxiao He,^{*} and Kemin Wang^{*}

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.

* E-mail: xiaoxiaohe@hnu.edu.cn; kmwang@hnu.edu.cn; leiyanli222@126.com.
Tel/Fax: +86-731-88821566.

Content list

1.	Sequences of oligonucleotides used in this study.	S-3		
2.	Dynamic light scattering analysis of AptDM and MDA.		1	S-4
3.	CD spectra of AptDM.		1	S-5
4.	Flow cytometric assays of the behavior of control probes.			S-6
5.	Binding ability of ZY11, AptDM and MDA after incubation with	out Mg ²⁺ .		S-7
6.	Quantitative detection of SMMC-7721 cells by MDA.			S-8
7.	Dox loading capacity of AptDM.	S	5-9	

Probe	Sequence (5'-3')
Y _{1i}	CGA CCG ATG AAT AGC T ATC CGT ACC TAC TCG TTTTT CCC
	CCC T CCC CCC
Y_{2i}	CGA GTC GTT CGC ACG T GCT ATT CAT CGG TCG TTTTT CCC
	CCC T CCC CCC
Y ₃	CGA GTA GGT ACG GAT T CGT GCG AAC GAC TCG GCT GTG
	AAC CAA GTC
Cy5-apt	Cy5-T GAC TTG GTT CAC AGC TTT TTT TTT ACG CGC GCG
	CGC ATA GCG CGC TGA GCT GAA GAT CGT ACC GTG AGC
	<u>GCG T</u>
Cy5-con ²	Cy5-T GAC TTG GTT CAC AGC TTT TTTT TTT ACT CAT AGT GTG
	TTT CAC ACT ATT TTA TCT TTG TTC TTA TCT TAT GAG T
$Y_{1c}{}^{3}$	CGA CCG ATG AAT AGC T ATC CGT ACC TAC TCG TTTTT TTT
	TTT T TTT TTT
Y_{2c}^{3}	CGA GTC GTT CGC ACG T GCT ATT CAT CGG TCG TTTTT TTT
20	TTT T TTT TTT
Y_{1cn}^4	CGA CCG ATG AAT AGC TAT CCG TAC CTA CTC GTA GTC
. op	GAA TGT CTC GTT A
Y_{2cn}^4	CGA GTC GTT CGC ACG TGC TAT TCA TCG GTC GTA GTC GAA
- •p	TGT CTC GTT A
$Y_{1cp'}^4$	CGA CCG ATG AAT AGC TAT CCG TAC CTA CTC GTT AAC
	GAG ACA TTC GAC T
$Y_{2cp'}^{4}$	CGA GTC GTT CGC ACG TGC TAT TCA TCG GTC GTT AAC GAG
·-r	ACA TTC GAC T
1 * 11	

Table S1 All of the oligonucleotides used in this work.¹

¹ In all sequences, split i-motif DNA sequences are in bold. The complementary ssDNA sequences used to replace split i-motif sequences are shown in blue. ZY11 sequence against SMMC-7721 cell is showed underlined, poly T in italic is used as linker for minimizing steric resistance.

² ConDM is assembled from Cy5-con, Y_{1i} , Y_{2i} , Y_3 , which shows little affinity to target SMMC-7721 cells. ³ AptDM_{Con} is assembled from Cy5-apt, Y_{1c} , Y_{2c} , and Y_3 , which is incapable of crosslinking each other into bulk nanostructure in whatever pH. While, ConDM_{Con} is assembled from Cy5-con, Y_{1c} , Y_{2c} , Y_3 , which is neither affinitive to target cells nor sensitive to pH.

⁴ AptDM-C₁ is assembled from Cy5-apt, Y_{1cp} , Y_{2cp} and Y_3 , while AptDM-C₂ is assembled from Cy5-apt, $Y_{1cp'}$, $Y_{2cp'}$, and Y_3 . AptDM-C₁ and AptDM-C₂ can spontaneously crosslink each other into bulk nanostructure (MDA_{cp}) via sticky-end hybridization in whatever pH.

Fig. S1 Dynamic light scattering analysis of the size of AptDM, MDA and MDA_{cp} , showing the mean diameters at 17.1, 178.5 and 195.2 nm, respectively.

Fig. S2 CD spectra of AptDM in PBS with different pH values. (Probe concentration: $1 \mu M$.)

Fig. S3 (A) Flow cytometric assays of SMMC-7721 cells after incubation with different probes in binding buffer with different pH values, respectively. (B) The corresponding signal-to-background ratio (SBR) of probes in (A) for detecting SMMC-7721 cells at different pH values. (Probe concentration: 50 nM.)

Fig. S4 (A) Flow cytometric assay of binding ability of different probes to SMMC-7721 cells at 37 °C in binding buffer containing 0 mM Mg^{2+} . (B) The corresponding SBR of ZY11, AptDM and MDA probes in (A).

Fig. S5 Flow cytometric assays of SMMC-7721 cells with decreasing cell number from 1.12×10^5 to 0 in 150 µL binding buffer after incubation with MDA.

Fig. S6 Fluorescence spectra of Dox solutions (1 μ M) added with AptDM at various ratios of Dox to AptDM.