3

NIR fluorescence probe based on phenazine with large Stokes shift for detecting and imaging of endogenous H_2O_2 in RAW 264.7 cells

Yongchao Yan,^{a†} Lingyan Liu,^{b†} Chenglin Li,^a Zhicheng Yang,^a Tao Yi^b and Jianli Hua^{*a}

^aKey Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China

^bDepartment of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China

Figure S1 Figure S1 The normalized excitation spectra and fluorescence spectra S_{2} The comformation of PCN at calculated ground state (S_{2}) and excite	ctra of PCN 2 ed state (S_1) 2
Figure S3 Time-dependent absorption and fluorescence spetrum	
Figure S4 Photostability of PCN-BP	4
Figure S5 The cell viability of RAW 264.7.	4
Figure S6 The data statistics of Mean intensity in cells	5
Figure S7 ¹ H NMR spectrum of PCN in CDCl ₃	5
Figure S8 ¹³ C NMR spectrum of PCN in CDCl ₃ .	6
Figure S9 High resolution mass spectrum of PCN	6
Figure S10 ¹ H NMR spectrum of PCN-BP in CDCl ₃ .	7
Figure S11 ¹³ C NMR spectrum of PCN-BP in CDCl ₃	7
Figure S12 High resolution mass spectrum of PCN-BP.	8

Figure S1. The normalized excitation spectra (the red line) and fluorescence spectra (the black line) of **PCN**.

Figure S2. The dihedral angle of benzene rings in **PCN** at calculated ground state (S_0) and excited state (S_1)

ure S3. (A) The absorption spectra of **PCN-BP** towards to 20 eq H_2O_2 at different time in PBS:DMF (v: v = 6:4, pH = 7.4). (B) Relation of Ratio A_{470}/A_{573} with time. (C) The fluorescence spectra of **PCN-BP** towards to 20 eq H_2O_2 at different time in PBS:DMF (v: v = 6:4, pH = 7.4). (D) Relation of fluorescence at 680 nm with time.

Figure S4. The intensity of **PCN-BP** and **PCN** after exposed to white light for different time.

Figure S5. The cell viability of RAW 264.7 incubated with different concentration of **PCN-BP** for 24 h.

Figure S6. Mean intensity in cells of different group (RAW 264.7 were incubated with 0, 100 μ M, 200 μ M H₂O₂, n =20). The data are shown as the means ± SD. *P < 0.05, **P < 0.01, ***P < 0.001.

Figure S7. ¹H NMR spectrum of PCN in CDCl₃.

Figure S8. ¹³C NMR spectrum of PCN in CDCl₃.

Figure S9. High resolution mass spectrum of PCN.

Figure S10. ¹H NMR spectrum of **PCN-BP** in CDCl₃.

Figure S11. ¹³C NMR spectrum of **PCN-BP** in CDCl₃.

Elemental Composition Report

Single Mas Tolerance = Element pre Number of is	ss Analysis 10.0 PPM / DBI diction: Off sotope peaks used	E: min = -1. I for i-FIT =	5, max = 50 3).0						
Monoisotopic Mass, Even Electron Ions 27 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-45 H: 0-55 B: 0-1 N: 0-4 O: 0-3 JI -HUA										
HL-YYC-904 4	0 (0.442) Cm (37:44)							1	TOF MS ES+	
100 	599.32 598.3231 1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 1997 - 1997	09 _{613.3370}	635 4331 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	6 666.38 665.442 650 660	668.3953 72 669.3972 670.3994 670 680	713.4044 	723 4809 737.3 10101010101010 720 730	5039 761.5 740 750	5.246+004 5791_767.5121 գուղծուղու m/z 760	
Minimum: Maximum:		5.0	10.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula			
669.3972	669.3976	-0.4	-0.6	20.5	17.7	0.0	C42 H50	B N4 (03	

Figure S12. High resolution mass spectrum of PCN-BP.