## **Supporting Information**

# A dendritically amplified fluorescence signal probe on SiO<sub>2</sub> microspheres for ultrasensitive detection of mercury ions

Chunli Li, Yuqi Zhang, Qianqian Cai, Guifen Jie\*, Chunxiang Li\*

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.\*E-mail: guifenjie@126.com.lichunxiang@qust.edu.cn.

### **Table of Contents**

| Experimental section S  | 32  |
|-------------------------|-----|
| Results and discussions | \$2 |
| References              | \$5 |

#### **Experimental section**

#### Apparatus

Transmission electron microscopy (TEM) images were recorded using a JEM-2000EXinstrument (Hitachi). Field-emission scanning electron microscopy (FE-SEM) was carried out on a JEOL JSM-6700F instrument. Photoluminescence (PL) spectra were obtained on a F-4500 spectrophotometer (Shimadzu). Absorption measurements were carried out using a Varian Cary 300 UV-vis spectrophotometer.All optical measurements were carried out at room temperature under ambient conditions.

#### Reagents

1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC), N-

Hydroxysuccinimide (NHS), Hydrogentetrachloroaurate (HAuCl<sub>4</sub>·4H<sub>2</sub>O, 99.9%), mercury perchlorate trihydrate (Hg(ClO<sub>4</sub>)<sub>2</sub>·3H<sub>2</sub>O) and Tris(2-carboxyethyl) phosphinehydrochloride (TCEP) were obtained from Aladdin (Shanghai, China). Terminal deoxynucleotidyl transferase (TdT), the nicking endonuclease (Nt.BbvCl), phi29 DNApolymerase and 10×phi29 DNA polymerase reaction buffer were purchased from Thermo Fisher Scientific, Inc. deoxyguanosine triphosphate (dGTP), deoxythymidine 5'-triphosphate (dTTP), deoxyribonucleoside triphosphate (dNTPs) werepurchased fromSangon biotech Co., Ltd. (Shanghai, China). SiO<sub>2</sub> microsphere was provided by Tianjin BaseLine ChromTech Research Centre (Tianjin, China). Other reagents were obtained from Aladdin (Shanghai, China). NEB buffer (pH 7.9) was obtained by using 50 mM NaCl, 10 mM Tris-HCl, 10mM MgCl<sub>2</sub>, and 1 mM dithiothreitol. The DNA probes in our study (Table-1) were synthesized and purified by Sangon Biotech Co., Ltd. (Shanghai, China).

| I able S1. Sequences of the DNA |                                                           |  |  |  |  |
|---------------------------------|-----------------------------------------------------------|--|--|--|--|
| Name                            | Sequence (5'3')                                           |  |  |  |  |
| M (Machine) DNA                 | CGTCTAGACGTAGCTGAGGTTCCCCAGATTCTTTCTTCCCTTGT<br>TTGTTTCTG |  |  |  |  |
| Capture probe 1                 | GTCTAGACGTAGCTGA-NH <sub>2</sub>                          |  |  |  |  |
| Capture probe 2                 | CCCCCCCCCCCCCAGAAGA-SH                                    |  |  |  |  |
| Reporter probe                  | SH-ACAAGCAAGGACAGCT                                       |  |  |  |  |
| Signal probe                    | Cy5-AAAAAAAAAAA                                           |  |  |  |  |

Table S1. Sequences of the DNA

**Results and discussions** 



Figure S1. Feasibility of the dendritically amplified fluorescence sensing system: (a) blank; (b) 0.1 fM Hg<sup>2+</sup>.



**Figure S2.** Effects of (A) SiO<sub>2</sub> microsphereconcentration; (B) phi29 polymerase and Nt.BbvCI amount; (C) dNTPs concentration; (D) SDA reaction time on FL signal for detection. (concentrations of target  $Hg^{2+}$ :1.0 pM)



**Figure S3.** Effects of (A) TdT amount; (B) TdT extension time on FL signal for detection. (concentrations of target Hg<sup>2+</sup>:1.0 pM)

Table S2. Comparison of Different Methods for Assay of Hg<sup>2+</sup>

| methods          | detection limit | dynamic range     | ref       |
|------------------|-----------------|-------------------|-----------|
| fluorescence     | 1.0 aM          | 1 aM to 10 pM     | This work |
| fluorescence     | 0.92 nM         | 1nM to 50 nM      | 1         |
| fluorescence     | 2 nM            | 2 nM to 60 nM     | 2         |
| SERS             | 1 pM            | 1 pM to 1 $\mu$ M | 3         |
| ECL              | 2 fM            | 5 fM to 100 pM    | 4         |
| ECL              | 0.33 fM         | 1 fM to 100 pM    | 5         |
| electrochemistry | 0.001 aM        | 1.0 aM to 100 nM  | 6         |



**Figure S4** Selectivity of the fluorescence strategy for detecting  $Hg^{2+}$  in the presence of other metal ions (The concentration of  $Hg^{2+}$  was 0.1 fM, the concentrations of interfering ions were all 100 fM).

| sample       | Added/fM | obtain /fM | recovery/% | RSD/% |
|--------------|----------|------------|------------|-------|
|              | 1        | 0.978      | 99.13      | 1.23  |
| drinking     | 10       | 10.034     | 100.5      | 1.77  |
| pure         | 100      | 100.32     | 102.8      | 2.71  |
| water        | 1000     | 994.28     | 97.6       | 1.48  |
|              | 1        | 1.008      | 100.03     | 1.63  |
| tap          | 10       | 10.108     | 103.13     | 1.92  |
| water        | 100      | 96.72      | 96.99      | 2.95  |
|              | 1000     | 973.28     | 97.94      | 1.44  |
|              | 1        | 1.024      | 102.7      | 2.31  |
| underground  | 10       | 9.685      | 96.31      | 1.69  |
| water        | 100      | 98.02      | 98.44      | 1.94  |
|              | 1000     | 1002.7     | 103.5      | 3.17  |
|              | 1        | 0.958      | 95.92      | 2.75  |
| surface      | 10       | 10.42      | 104.7      | 3.41  |
| water        | 100      | 101.25     | 102.4      | 2.39  |
|              | 1000     | 973.7      | 97.86      | 1.71  |
|              | 1        | 1.035      | 103.9      | 2.16  |
| water with   | 10       | 9.729      | 97.42      | 2.85  |
| high mineral | 100      | 103.22     | 102.3      | 3.26  |
| content      | 1000     | 958.8      | 95.68      | 1.89  |

Table S3. Recovery in Different Water Samples (n=3) with the Proposed Method

References

- 1 M. Li, X. Zhou, W. Ding, S. Guo and N. Wu, Biosens. Bioelectron., 2013, 41, 889-893.
- 2 M. Li, Q. Wang, X. Shi, L. A. Hornak and N. Wu, Anal. Chem., 2011, 83, 7061-7065.
- 3 L. Zhang, H. Chang, A. Hirata, H. Wu, Q. K. Xue and M. Chen, ACS Nano., 2013, 7, 4595-4600.
- 4 D. M. Wang, Q. Q. Gai, R. F. Huang and X. Zheng, Biosens. Bioelectron., 2017, 98, 134-139.
- 5 Y. M. Lei, Anal. Chem., 2018, 90. 6851-6858.
- 6 Y. Zhang, G. M. Zeng, L. Tang, J. Chen, Y. Zhu, X. X. He and Y. He, Anal. Chem., 2014, 87, 989-996.