## **Electronic Supplementary Information**

## *In vitro* simultaneous mapping of the partial pressure of oxygen, pH and inorganic phosphate using electron paramagnetic resonance

Akihiro Taguchi,<sup>a</sup> Stephen DeVience,<sup>b,c</sup> Benoit Driesschaert,<sup>b,d</sup> Valery V. Khramtsov<sup>b,c</sup> and Hiroshi Hirata<sup>\*e</sup>

<sup>a</sup> Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan

<sup>b</sup> In Vivo Multifunctional Magnetic Resonance centre, West Virginia University, Robert C. Byrd Health Sciences Centre, 1 Medical Centre Drive, Morgantown, West Virginia 26506, USA

<sup>c</sup> Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA

<sup>d</sup> Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA

<sup>e</sup> Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan

\* E-mail: hhirata@ist.hokudai.ac.jp



**Fig. S1** RF power saturation characteristics of the signal intensity for  $p_1$ TAM-D. The measurement parameters of the spectrum were as follows: magnetic field scanning 0.8 mT, magnetic field modulation 8  $\mu$ T, scan duration 100 ms, the time constant of lack-in amplifier 30  $\mu$ s, the number of data points per scan 2048 and the number of averaging 300. The RF magnetic field generation coefficient of the RF resonator was 98  $\mu$ T/W<sup>1/2</sup>.



**Fig. S2** The scatter of acid dissociation constant  $pK_a$  estimation. The mean of estimated  $pK_a$  values was obtained from 20 EPR spectra with different sample pH values. The bar in the plot (6.81) shows the mean of the  $pK_a$  plots. The standard deviation was estimated to be 0.061 pH units, and the standard error of the mean was estimated to be 0.014 pH units (sample size n = 20). Each plot ( $pK_a$ ) was obtained from the measured fraction  $P_a$  and the known-sample pH value. In this measurement, dissolved oxygen was purged by nitrogen gas bubbling, and the measurements were performed at room temperature (25°C).



**Fig. S3** Representative zero-gradient EPR spectrum for the multiple conditioned  $p_1$ TAM-D solutions. This spectrum was recorded from the samples shown in Fig. 3 with a single accumulation (scan duration of 0.1 s). The measurement parameters are given in Experimental section (EPR spectroscopy and imaging). The signal-to-noise ratio of this spectrum was estimated to be 7.5. The noise amplitude was given as the two-fold root-mean-square value of the baseline noise, which was obtained from the 200 data points at the left end of the spectrum.



**Fig. S4** Representative EPR spectra for the multiple conditioned  $p_1$ TAM-D solutions. EPR spectra at the specified voxels (almost the centre of each tube) in the tube #4 (a), #5 (b) and #6 (c). Black and red lines represent reconstructed EPR spectra and corresponding fitted spectra, respectively. The prepared conditions were  $pO_2 = 0$  mmHg, pH=6.70 and Pi=4.0 mM in the tube #4;  $pO_2 = 19$  mmHg, pH = 6.78 and Pi = 2.5 mM in the tube #5;  $pO_2 = 38$  mmHg, pH = 6.90 and Pi = 1.25 mM in the tube #6. The concentration of NaCl was 38 mM for three samples. The spectral lineshape at each voxel derives the  $pO_2$ , pH and Pi values with the predetermined calibration curves.

| Imaging                                      | pC                                                                                                                                                                               | <b>)</b> <sub>2</sub>                                                                                                                                                                                         | р                                                                                                                                                                    | H                                                                                                                 |                                                                                                                                                           | Pi                                                                                                                                                     |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| modalities                                   | Pros                                                                                                                                                                             | Cons                                                                                                                                                                                                          | Pros                                                                                                                                                                 | Cons                                                                                                              | Pros                                                                                                                                                      | Cons                                                                                                                                                   |
| <sup>19</sup> F-MRI                          | <ul> <li>Preclinical use</li> <li>Clinical scanner<br/>available</li> </ul>                                                                                                      | <ul> <li>Low sensitivity</li> <li>High<br/>concentration of<br/>the probe</li> </ul>                                                                                                                          |                                                                                                                                                                      |                                                                                                                   |                                                                                                                                                           |                                                                                                                                                        |
| BOLD MRI                                     | <ul> <li>Clinically<br/>applicable</li> <li>Availability of <sup>1</sup>H<br/>MRI anatomical<br/>co-imaging</li> </ul>                                                           | • Indirect<br>assessment of<br>oxygen (blood<br>flow/deoxyhemo<br>globin content)                                                                                                                             |                                                                                                                                                                      |                                                                                                                   |                                                                                                                                                           |                                                                                                                                                        |
| MOBILE MRI                                   | <ul> <li>Clinically<br/>applicable</li> <li>Availability of <sup>1</sup>H<br/>MRI anatomical<br/>co-imaging</li> </ul>                                                           | • Qualitative<br>assessment of<br>hypoxic areas                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                   |                                                                                                                                                           |                                                                                                                                                        |
| <sup>18</sup> F-MISO PET                     | <ul> <li>High detection<br/>sensitivity</li> <li>Clinically<br/>available</li> <li>Hypoxic cell<br/>targeting</li> </ul>                                                         | <ul> <li>Radioactive<br/>tracer</li> <li>Non-linear<br/>response to pO<sub>2</sub></li> </ul>                                                                                                                 |                                                                                                                                                                      |                                                                                                                   |                                                                                                                                                           |                                                                                                                                                        |
| Fluorescent/<br>phosphorescent<br>imaging    | • High spatial resolution                                                                                                                                                        | • Limited<br>penetration<br>depth                                                                                                                                                                             | • High spatial resolution                                                                                                                                            | • Limited<br>penetration<br>depth                                                                                 |                                                                                                                                                           |                                                                                                                                                        |
| Near-infrared<br>spectroscopy<br>and imaging | Clinically<br>applicable                                                                                                                                                         | • Not detecting<br>pO <sub>2</sub> (detecting<br>oxygen<br>saturation)                                                                                                                                        |                                                                                                                                                                      |                                                                                                                   |                                                                                                                                                           |                                                                                                                                                        |
| Photo-acoustic imaging                       | • Larger imaging<br>depth than<br>Fluorescent<br>imaging                                                                                                                         | • Difficult to quantify pO <sub>2</sub>                                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                   |                                                                                                                                                           |                                                                                                                                                        |
| (acido) CEST-<br>MRI                         |                                                                                                                                                                                  |                                                                                                                                                                                                               | Clinically<br>available     CT agents<br>(e.g.,<br>iopamidol)<br>applicable to<br>IV delivery     Availability of<br><sup>1</sup> H MRI<br>anatomical co-<br>imaging | • Low sensitivity                                                                                                 |                                                                                                                                                           |                                                                                                                                                        |
| <sup>31</sup> P-NMR/MRI                      |                                                                                                                                                                                  |                                                                                                                                                                                                               | • Specific<br>detection of<br>extracellular<br>pH using<br>exogenous <sup>31</sup> P<br>probes                                                                       | • Low sensitivity                                                                                                 | <ul> <li>No imaging<br/>agent required</li> </ul>                                                                                                         | <ul> <li>Low detection<br/>sensitivity</li> <li>Difficulties to<br/>discriminate<br/>intra and<br/>extracellular Pi</li> </ul>                         |
| Hyperpolarized<br><sup>13</sup> C-MRI        |                                                                                                                                                                                  |                                                                                                                                                                                                               | Clinical<br>scanner<br>available                                                                                                                                     | <ul> <li>Limited<br/>acquisition<br/>time/measure-<br/>ment time</li> <li>Hyper-polarizer<br/>required</li> </ul> |                                                                                                                                                           |                                                                                                                                                        |
| OMRI<br>(PEDRI)                              | <ul> <li>Good spatial<br/>resolution</li> <li>Concurrency<br/>using multiple<br/>scans</li> <li>Availability of <sup>1</sup>H<br/>MRI anatomical<br/>co-imaging</li> </ul>       | High RF power<br>absorption                                                                                                                                                                                   | <ul> <li>Good spatial<br/>resolution</li> <li>Concurrency<br/>using multiple<br/>scans</li> <li>Specific<br/>detection of<br/>extracellular<br/>pH</li> </ul>        | High RF power<br>absorption                                                                                       | <ul> <li>Good spatial<br/>resolution</li> <li>Concurrency<br/>using multiple<br/>scans</li> <li>Specific<br/>detection of<br/>extracellular Pi</li> </ul> | High RF power<br>absorption                                                                                                                            |
| EPR*                                         | <ul> <li>High accuracy<br/>and sensitivity to<br/>absolute values<br/>of oxygen<br/>concentration</li> <li>Concurrency<br/>using multi-<br/>functional pTAM<br/>probe</li> </ul> | <ul> <li>Concentration-<br/>induced line<br/>broadening</li> <li>Moderate<br/>resolution <i>in</i><br/><i>vitro</i></li> <li>Intra-tissue<br/>delivery of<br/>pTAM probe <i>in</i><br/><i>vivo</i></li> </ul> | <ul> <li>Specific<br/>detection of<br/>extracellular<br/>pH</li> <li>Good accuracy</li> <li>Concurrency<br/>using pTAM<br/>probe</li> </ul>                          | • Intra-tissue<br>delivery of<br>pTAM probe,<br><i>in vivo</i>                                                    | <ul> <li>Specific<br/>detection of<br/>extracellular Pi</li> <li>Concurrency<br/>using pTAM<br/>probe</li> </ul>                                          | <ul> <li>Moderate<br/>resolution <i>in</i><br/><i>vitro</i></li> <li>Intra-tissue<br/>delivery of<br/>pTAM probe, <i>in</i><br/><i>vivo</i></li> </ul> |

**Table S1**Comparison of imaging modalities for the partial pressure of oxygen, pH and inorganicphosphate in biomedical applications.

Note: IV stands for 'intravenous' route. \* Faster acquisition required for 3D mapping (CW-EPR).

| Threshold level (%) | Number of voxels | pO <sub>2</sub> (mmHg) | pН            | Pi (mM)       |
|---------------------|------------------|------------------------|---------------|---------------|
| 90                  | 73               | $4\pm 5$               | $6.70\pm0.01$ | $4.2\pm0.2$   |
| 80                  | 174              | $4\pm 5$               | $6.70\pm0.01$ | $4.2\pm0.3$   |
| 70                  | 285              | $5\pm 5$               | $6.70\pm0.01$ | $4.1\pm0.3$   |
| 60                  | 427              | $5\pm 5$               | $6.70\pm0.01$ | $4.1\pm0.3$   |
| 50                  | 608              | $5\pm5$                | $6.70\pm0.01$ | $4.1\pm0.4$   |
| 40                  | 834              | $5\pm 5$               | $6.70\pm0.01$ | $4.1 \pm 0.4$ |
| 30                  | 1244             | $5\pm 5$               | $6.70\pm0.01$ | $4.0\pm0.4$   |
| 20                  | 1749             | $5\pm 5$               | $6.70\pm0.01$ | $4.0\pm0.4$   |

**Table S2** The measured values of the partial pressure of oxygen, pH and inorganic phosphate for sample No. 4 (Fig. 5) with different threshold levels (mean  $\pm$  SD).

**Table S3** The measured values of the partial pressure of oxygen, pH and inorganic phosphate for sample No. 5 (Fig. 5) with different threshold levels (mean  $\pm$  SD).

| Threshold level (%) | Number of voxels | pO <sub>2</sub> (mmHg) | pН              | Pi (mM)       |
|---------------------|------------------|------------------------|-----------------|---------------|
| 90                  |                  |                        |                 |               |
| 80                  |                  |                        |                 |               |
| 70                  | 31               | $23 \pm 3$             | $6.75 \pm 0.01$ | $2.4 \pm 0.4$ |
| 60                  | 142              | $22 \pm 4$             | $6.75 \pm 0.01$ | $2.3 \pm 0.4$ |
| 50                  | 304              | $22 \pm 5$             | $6.75 \pm 0.01$ | $2.3 \pm 0.4$ |
| 40                  | 520              | $21 \pm 5$             | $6.76\pm0.01$   | $2.3 \pm 0.5$ |
| 30                  | 850              | $21 \pm 5$             | $6.76\pm0.01$   | $2.3\pm0.5$   |
| 20                  | 1433             | $21 \pm 6$             | $6.76\pm0.01$   | $2.3\pm0.6$   |

**Table S4** The measured values of the partial pressure of oxygen, pH and inorganic phosphate in sample No. 6 (Fig. 5) with different threshold levels (mean  $\pm$  SD).

| Threshold level (%) | Number of voxels | pO <sub>2</sub> (mmHg) | pН            | Pi (mM)       |
|---------------------|------------------|------------------------|---------------|---------------|
| 90                  |                  |                        |               |               |
| 80                  | 29               | $56\pm5$               | $6.87\pm0.01$ | $1.3\pm0.2$   |
| 70                  | 161              | $49\pm9$               | $6.88\pm0.01$ | $1.6 \pm 0.4$ |
| 60                  | 346              | $47\pm9$               | $6.88\pm0.01$ | $1.5 \pm 0.4$ |
| 50                  | 558              | $45 \pm 10$            | $6.88\pm0.02$ | $1.5 \pm 0.5$ |
| 40                  | 830              | $43 \pm 10$            | $6.88\pm0.02$ | $1.5 \pm 0.5$ |
| 30                  | 1170             | $42 \pm 10$            | $6.88\pm0.02$ | $1.5 \pm 0.6$ |
| 20                  | 1616             | $41 \pm 10$            | $6.88\pm0.02$ | $1.5\pm0.6$   |

Note: These values in Tables S2 to S4 were obtained from the middle half of the reconstructed data (36 out of 72 slice images).