Electronic Supplementary Information

A High-Throughput SAMDI-Mass Spectrometry Assay for Isocitrate Dehydrogenase 1

Sarah E. Anderson, ^a Natalie S. Fahey, ^b Jungsoo Park, ^c Patrick T. O'Kane, ^a Chad A. Mirkin ^{a,b,c} and Milan Mrksich^{*a,b,d}

^aDepartment of Chemistry, Northwestern University, Evanston, Illinois 60208, United States

^bDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States

^cInterdisciplinary Biological Sciences (IBiS) Program, Northwestern University, Evanston, Illinois 60208, United States

^dDepartment of Cell and Molecular Biology, Northwestern University, Evanston, Illinois 60208, United States

*Corresponding author. E-mail: milan.mrksich@northwestern.edu

Figure S1. Representative SAMDI-MS spectra of untreated lysates (left), lysates treated with 5 mM isocitrate at 37 °C for 2 hours (center) and lysates treated with 1 mM NADP⁺ for 2 hours at 37 °C (right) displaying ¹²C α KG capture at m/z=1091 (sodium adduct of α -cleavage product), ¹³C α KG capture at m/z=1095 (sodium adduct of α -cleavage product) and pyruvate capture at m/z=1099 (sodium adduct). Untreated lysates gave an α KG concentration value of 410 μ M ± 42 μ M, isocitrate-treated lysates gave an α KG concentration value of 317 μ M ± 33 μ M and NADP⁺treated lysates gave an α KG concentration value of 450 μ M ± 36 μ M (mean ± standard deviation with and with n=3 biological replicates per condition). As indicated by the comparably low α KG concentrations measured in all 3 groups, neither isocitrate nor NADP⁺ independently increases α KG production. However, the spectra of both the isocitrate-treated lysates and the NADP⁺-treated lysates display a decrease in the amount of immobilized pyruvate compared to the spectra of the untreated lysates (isocitrate produces a greater degree of decrease in immobilized pyruvate than NADP⁺). This result suggests that the decrease in pyruvate level observed upon addition of isocitrate and NADP⁺ to the lysate is not solely a product of excess α KG outcompeting pyruvate for reaction with the hydrazide sites. Rather, it seems that treatment with IDH1's substrate or cofactor produces a shift in pyruvate metabolism that ultimately lowers its concentration in the lysate.

Figure S2. Image of western blot gel featuring bands for IDH1 and HSP 70 loading control for 2 experimental replicates.