Supporting Information

Plasmonic Nanobiosensors for Detection of MicroRNA Cancer Biomarkers in Clinical Samples

Bridget M. Crawford^{a,b}; Hsin-Neng Wang^{a,b}; Christina Stolarchuk^c; Richard J. von Furstenberg^c; Pietro Strobbia^{a,b}; Dadong Zhang^d; Xiaodi Qin^d; Kouros Owzar^e; Katherine S. Garman^{c*}; Tuan Vo-Dinh^{a,b,f*}

Table of Contents

Table S1.	Clinical sample labeling and histopathological discrimination. Histopathological diagnoses included normal tissue, EAC, esophageal squamous cell carcinoma (ESCC) and BE. Those samples denoted with an asterisk were unable to be tested by iMS assay due to insufficient amount of extracted RNA for triplicate measurement (100 ng required per iMS test).
Figure S1.	Transmission electron microscopy (TEM) images of gold nanostars and silver- coated gold nanostars.
Figure S2.	Absorbance of silver-coated gold nanostars before and after modification with DNA sequences to achieve iMS nanoprobes.
Figure S3.	Detection sensitivity of the iMS nanobiosensors for miR-21 detection. Spectra offset for clarity.
Table S2.	True positive (sensitivity) and true negative (specificity) of discriminating esophageal cancer (EC) from normal tissue.
Table S3.	True positive (sensitivity) and true negative (specificity) of discriminating EC & Barrett's esophagus (BE) from normal tissue.
Figure S4.	Receiver Operating Characteristics (ROC) curve for iMS response of patient samples diagnosed as normal vs. unhealthy (Barrett's esophagus and esophageal cancer). The area under the curve (AUC) indicates how well the iMS technique can distinguish between the two diagnostic groups.
Figure S5.	Detection of miR-21 within paired tissue biopsies. SERS intensities (area-under- curve of the 557cm ⁻¹ peak; arbitrary units) are given for patient pairs diagnosed as (A) normal and tumor, (B) normal and Barrett's esophagus (BE), and (C) BE and tumor.
Table S4.	Concordance (Kendall Tau) and correlation (Pearson correlation) between miR- 21 PCR results (normalized by cel-39) and SERS intensity (area-under-curve of the 557cm ⁻¹ peak)

^{a.} Fitzpatrick Institute for Photonics, Duke University, Durham, NC, USA.

^b Department of Biomedical Engineering, Duke University, Durham, NC, USA.

^c Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA.

^{d.} Duke Cancer Institute, Duke University, Durham, NC, USA.

^{e.} Biostatistics and Bioinformatics, Duke University, Durham, NC,USA.

^f Department of Chemistry, Duke University, Durham, NC, USA.

Email: katherine.garman@duke.edu; tuan.vodinh@duke.edu

Table	S1.	Clinical	sample	labeling	and	histopathological	discrimination.	Histopathological
diagno	ses i	ncluded 1	normal ti	ssue, EA	C, es	ophageal squamou	s cell carcinoma	(ESCC) and BE.
Those	samp	oles denot	ted with a	an asterisl	k wer	e unable to be teste	ed by iMS assay	due to insufficient
amoun	t of e	extracted	RNA for	triplicate	meas	surement (100 ng re	equired per iMS	test).

De-identified	Patient	
Sample ID	Number	Sample Type
Sample 1	5	EAC
Sample 2	10	BE
Sample 3*	6	Normal
Sample 4	5	Normal
Sample 5	4	BE
Sample 6	1	Normal
Sample 7	10	EAC
Sample 8	9	Normal
Sample 9	7	EAC
Sample 10	2	BE
Sample 11	8	EAC
Sample 12*	9	ESCC
Sample 13	3	BE
Sample 14	6	BE
Sample 15	1	EAC
Sample 16	4	Normal
Sample 17	8	Normal
Sample 18	3	Normal
Sample 19	7	Normal
Sample 20*	2	Normal

Figure S1. TEM images of gold nanostars (left) and silver coated gold nanostars (right).

Figure S2. Absorbance of silver-coated gold nanostars (AuNS@Ag) before modification with DNA sequences, after modification with stem-loop probe (iMS pre-placeholder) and following addition of placeholder to achieve fully prepared nanoprobes (iMS). The absence of a shift in absorbance peak demonstrates that no particle aggregation occurred during iMS synthesis.

Figure S3. Detection sensitivity of the iMS nanobiosensors for miR-21 detection. Spectra offset for clarity.

	EC	Normal	Total
Total	5	7	12
Test Positive	5	0	5
Test Negative	0	7	7
	True	True Negative	
	Positive	7/7 = 100%	
	5/5 = 100%		

Table S2. True positive (sensitivity) and true negative (specificity) of discriminating esophageal cancer (EC) from normal tissue.

Table S3. True positive (sensitivity) and true negative (specificity) of discriminating EC & Barrett's esophagus (BE) from normal tissue

	EC & BE	Normal	Total
Total	10	7	17
Test Positive	9	0	9
Test Negative	1	7	8
	True Positive	True Negative	
	9/10 = 90%	7/7 = 100%	

Figure S4. Receiver Operating Characteristics (ROC) curve for iMS response of patient samples diagnosed as normal vs. unhealthy (Barrett's esophagus and esophageal cancer). The area under the curve (AUC) indicates how well the iMS technique can distinguish between the two diagnostic groups.

Figure S5. Detection of miR-21 within paired tissue biopsies. SERS intensities (area-under-curve of the 557cm-1 peak; arbitrary units) are given for patient pairs diagnosed as (A) normal and tumor, (B) normal and Barrett's esophagus (BE), and (C) BE and tumor.

Table S4. Concordance (Kendall Tau) and correlation (Pearson correlation) between miR-21 PCR
results (normalized by cel-39) and SERS intensity (area-under-curve of the 557cm ⁻¹ peak) within
each tissue type as determined by histopathological diagnosis.

	n	τ	p-value	ρ	p-value
All types combined	17	0.8	<0.001	0.63	0.007
Normal	7	1.0	<0.001	0.93	0.003
Barrett's Esophagus	5	0.6	0.23	0.40	0.51
Tumor	5	0.6	0.23	0.70	0.19

References

- 1. H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant and T. Vo-Dinh, *Nanotechnology*, 2012, **23**, 075102.
- 2. A. M. Fales, H. Yuan and T. Vo-Dinh, *The Journal of Physical Chemistry C*, 2014, **118**, 3708-3715.
- 3. H.-N. Wang, B. M. Crawford, A. M. Fales, M. L. Bowie, V. L. Seewaldt and T. Vo-Dinh, *The Journal of Physical Chemistry C*, 2016, **120**, 21047-21055.
- 4. R. C. Team, 2013.
- 5. A. I. McLeod, *R Package Kendall*, 2005.
- 6. W. Venables, B. Ripley and S. Isbn, 2002.
- 7. Y. Xie, *Dynamic Documents with R and knitr*, Chapman and Hall/CRC, 2016.