Supporting Information

Ultrasensitive electrochemiluminescence aptasensor for the detection of diethylstilbestrol based on an enhancing mechanism of the metal-organic frameworks NH₂-MIL-125 (Ti) in 3, 4, 9, 10-perylenetetracar-boxylic acid/K₂S₂O₈ system

Jingxian Li,^a Xueling Shan,^a Ding Jiang,^a Zhidong Chen*^a

^aJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

 $^{b}Advanced\ Catalysis\ and\ Green\ Manufacturing\ Collaborative\ Innovation\ Center$,

Changzhou University, Changzhou 213164, China. Corresponding author E-mail: *Z. Chen: zdchen@cczu.edu.cn

Figure S1. SEM images of (A) NH₂-MIL-125, (B) PTCA and (C, D) PTCA/NH₂-

MIL-125.

Figure S2. XPS spectra of PTCA/NH₂-MIL-125 sample (A) Survey of the sample, (B) C 1s, (C) N1s, (D) O 1s, (E) Ti 2p.

Figure S3. (A) (a) Fluorescence spectra and (b) electrochemical luminescence emission spectra of NH₂-MIL-125/PTCA; (B) Fluorescence spectra of (a) NH₂-MIL-125, (b) PTCA and (c) NH₂-MIL-125/PTCA.

Figure S4. Reproducibility of the ECL aptasensor in 0.1nm of DES.

Figure S5. Effects of (A) the mass ratio of NH₂-MIL-125 and PTCA; (B) the reaction time between the amino-aptamer with DES; (C) concentration of aptamer; (D) buffer pH; (E) scan rate on the ECL intensity of the as-fabricated ECL aptasensor; (F) concentration of PTCA/NH₂-MIL-125;

Method	Linear range	LOD	Reference
MIP	7.45×10 ⁻¹⁰ ~3.73×10 ⁻⁶ M	2.2×10 ⁻¹¹ M	
DPV	1.0×10 ⁻⁸ ~ 1.3×10 ⁻⁵ M	4×10 ⁻⁹ M	2
CV	2.0×10 ⁻⁵ ~1.0×10 ⁻⁷ M	1.5×10 ⁻⁸ M	3
Electrochemical immunosensor	1.86×10 ⁻¹¹ ~1.86×10 ⁻⁹ M	6.98×10 ⁻¹² M	4
ECL(MMIPs - QDs-Aptamer)	$0.3 \sim 1.0 \times 10^5 \text{pg} \cdot \text{mL}^{-1}$	$0.1 pg \cdot mL^{-1}$	5
ECL(Ru(bpy) ₃ ^{2+/} UiO-67)	0.01ng•mL ⁻¹ ~50pg•mL ⁻¹	3.27fg•mL ⁻¹	6
ECL(CdTe@ZnS/ r-GO)	1.8×10 ⁻³ ~25.0nM	0.25mM	7
ECL(apt/PTCA/ NH ₂ -MIL-125)	1.0×10 ⁻¹⁵ ~ 1.0×10 ⁻⁶ M	2.8×10 ⁻¹⁶ M	This work

 Table S1. Comparison of different analytical methods for DES

Sample	Added value	Found amount	Recovery	RSD
	fM	fM	(%)	(%) (n=3)
Tap water	0	ND	-	-
	20.00	21.08	105.4	5.3
	50.00	48.16	96.3	3.8
	100.00	103.32	103.3	4.0
Lake water	0	ND	-	-
	20.00	19.22	96.1	4.0
	50.00	49.16	98.3	1.7
	100.00	104.00	104.0	3.8
Pond water	0	ND	-	-
	20.00	19.60	98.0	4.2
	50.00	48.22	96.4	3.6
	100.00	102.20	102.2	2.9

Table S2. Application of the ECL aptasensor for DES determination in real samples

ND=not founded

References

- X. Wang, H. Ding, X. Yu, X. Shi, A. Sun, D. Li and J. Zhao, *Talanta*, 2019, 197, 98-104.
- D. Lu, S. Lin, L. Wang, X. Shi, C. Wang and Y. Zhang, *Electrochim. Acta*, 2012, 85, 131-138.
- 3. J. Fei, X. Wen, L. Yi, F. Ge, Y. Zhang, M. Huang and X. Chen, J. Appl. *Electrochem.*, 2008, **38**, 1527-1533.
- 4. P. Xiong, N. Gan, H. Cui, J. Zhou, Y. Cao, F. Hu and T. Li, *Microchim. Acta*, 2014, **181**, 453-462.
- 5. Q. Jiang, D. Zhang, Y. Cao and N. Gan, J. Electroanal. Chem., 2017, 789, 1-8.
- 6. X. Dong, G. Zhao, L. Liu, X. Li, Q. Wei and W. Cao, *Biosens. Bioelectron.*, 2018, **110**, 201-206.
- W.-R. Zhao, T.-F. Kang, Y.-H. Xu, X. Zhang, H. Liu, A.-J. Ming, L.-P. Lu, S.-Y. Cheng and F. Wei, *Sens. Actuators, B*, 2020, 306, 127563.