ELECTRONIC SUPPLEMENTARY INFORMATION

Dynamic behavior analysis of ion transport through a bilayer lipid membrane by an electrochemical method combined with fluorometry

Terumasa Omatsu^a, Kisho Hori^a, Yasuhiro Naka^a, Megumi Shimazaki^a, Kazushige Sakai^a, Koji Murakami ^a, Kohji Maeda^a, Mao Fukuyama^{b,c} and Yumi Yoshida^{*a}

a. Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto

606-8585, Japan

b. PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
c. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai

980-8577, Japan

*Corresponding author: yyoshida@kit.jp

Extraction procedure of rhodamine 6G, R6G⁺, and BF₄⁻ with liposomes

The extraction of R6G⁺ with BF_4^- based on the dialysis membrane method^{1–3} was carried out as described in previous work⁴. The aqueous solution was separated using a dialysis tube of regenerated cellulose (diameter of 16 mm, thickness of 20.3 µm, pore size of 5 nm, molecular weight cut-off of 14,000 Da; UC 20-32-100, Viskase Companies Inc., Illinois, USA). The dialysis tube including the aqueous inner solution (1 cm⁻³), whose top and bottom were tightly tied with Nylon line (Nasuly N-Walker Nylon W-DMV, YGK Yoz-Ami Co., Ltd., Naruto, Japan) to avoid inner solution leakage, was soaked in a test glass tube (height of 180 mm, internal diameter of 15 mm) filled with the outer solution (5 cm⁻³). The inner solution contained 0.10 M phosphate buffer (pH 7), various concentrations of

NaBF₄, and 1.0 × 10⁻⁶ mol dm⁻³ R6GCl; whereas the outer solution contained 0.10 mol dm⁻³ phosphate buffer (pH 7), various concentrations of NaBF₄, and liposomes consisting of 3.3×10^{-3} mol dm⁻³ PC and 3.3×10^{-3} mol dm⁻³ cholesterol. The liposomes were prepared as described in previous work⁴, the size of the liposomes was 140 ± 60 nm. The ionic strength of the aqueous solution was mainly determined by 0.10 mol dm⁻³ phosphate buffer, and all extraction experiments were carried out under the same ionic strength. The test glass tubes with the outer and inner solutions were shaken for 15 h at 20°C in a reciprocal shaker (Taiyo Incubator Personal, Taiyo Kagakukogyo Co., Tokyo, Japan). We confirmed that the extraction time of 15 h was enough to attain extraction equilibrium by measuring the R6G⁺ concentrations in the inner and outer solutions, where their concentration after extraction indicates the same value. To avoid R6G⁺ adsorption, the dialysis tube and the glass tube required pretreatment⁴.

For the extraction, two sets of test glass tubes were prepared for each experiment: one in the presence of liposomes (the measurement cell) and the other in their absence (the reference cell). The amount of extracted R6G⁺ was estimated from the difference between the R6G⁺ concentration in the inner solution of the measurement cell, $[R6G⁺]_{mea}$, and that of the reference cell, $[R6G⁺]_{ref}$. The concentration of R6G⁺ in the solution was determined by fluorescence spectrometry (FP6200, Jasco Co., Tokyo, Japan).

Determination of apparent distribution ratio

The apparent distribution ratio, R, of R6G⁺ between the aqueous phase, W, and the liposome membrane, lip, was defined as the ratio of the concentration of R6G⁺ in lip ($[R6G^+]_{lip}^T$) to the concentration of R6G⁺ in W, $[R6G^+]_W$.

$$R = \frac{[R6G^+]_{lip}^T}{[R6G^+]_W}$$
(S1)

Here, $[A]_B$ indicates molar concentration of A in phase B. We assumed the ion-pair formation in W to be negligible and the concentration of R6G⁺ in W to be equal to $[R6G^+]_W$, which was experimentally estimated as $[R6G^+]_{mea}$. $[R6G^+]_{lip}^T$ was estimated as the apparent concentration of R6G⁺ in lip based on the decrease in R6G⁺ concentration of the inner solution caused by the addition of the liposome $([R6G^+]_{ref} - [R6G^+]_{mea})$.

$$[R6G^{+}]_{lip}^{T} = ([R6G^{+}]_{ref} - [R6G^{+}]_{mea}) \frac{(V_{out} + V_{in})}{V_{lip}}$$
(S2)

Here, V_{in} and V_{out} are the volumes of the inner (1 cm⁻³) and outer solutions (5 cm⁻³) in the dialysis tube, respectively. V_{lip} is the volume of the BLM phase of all liposomes, which was calculated from PC concentration [PC], determined using an *in vitro* assay kit; the thickness of the BLM (x = 5 nm) and the molecular area of the PC (A = 0.456 nm²/molecule^{5,6}) according to Eq. (S3).

$$V_{lip} = [PC]V_{out}N_AAx/2 \tag{S3}$$

where N_A is the Avogadro constant. In the calculation of R, the concentration of R6G⁺ in the internal aqueous phase of the liposome was assumed to be $[R6G^+]_W$. Even if the amount of R6G⁺ transferring

into the internal aqueous phase of the liposome was low, the effect on R was considered negligible because the volume of the internal aqueous phase was about 1% of the total volume of the outer and inner solutions.

The measured $[R6G^+]_{mea}$ and $[R6G^+]_{ref}$ are shown in Fig. S1.

Fig. S1 Dependence of $[R6G^+]_{ref}$ and $[R6G^+]_{mea}$ in the presence of PC (\bullet , $[R6G^+]_{mea}$) and in the absence of PC (\circ , $[R6G^+]_{ref}$) upon the concentration of BF₄⁻. Original composition of the aqueous solution: 1.0×10^{-1} mol dm⁻³ phosphate buffer (pH 7.0), 1.8×10^{-7} mol dm⁻³ R6GCl, and x mol dm⁻³ NaBF₄ (x = 3.0×10^{-3} , 1.0×10^{-2} , 3.0×10^{-2} , 1.0×10^{-1} or 3.0×10^{-1}). PC and cholesterol concentration add as liposome: 3.3×10^{-3} mol dm⁻³.

Adsorption of R6G⁺ on the liposome surface with the PC:CH ratio of 1:1

The total mole number per unit area of adsorption sites, N_{ads}^{T} on the liposome with the PC:CH ratio of 1:1 was evaluated by the liposome extraction described above, which is same procedure in

previous paper⁴. The liposome extraction was performed in changing the R6G⁺ concentration in aqueous phase from 2.5×10^{-4} mol dm⁻³ to 1.0×10^{-3} mol dm⁻³. The R6G⁺ was added as a chloride salt. In this condition, *R* was independent upon concentration of Cl⁻; R6G⁺ and Cl⁻ are undistributed into the liposome membrane. It was assumed that the decrease in [R6G⁺]_W was caused by the adsorption of R6G⁺ on the liposome surface. The mole number of R6G⁺ adsorbed on the liposome surface, $N_{R6G^+,ads}$, was plotted to [R6G⁺]_W (Fig. S2). $N_{R6G^+,ads}$ increased with the increase of [R6G⁺]_W and reached the saturated adsorption at 1.0×10^{-3} mol m⁻². Therefore, N_{ads}^{T} was assumed to be 0.85 $\times 10^{-7}$ mol m⁻².

Figure S2. (a) Equilibrium isotherm for the adsorption of R6G⁺ on the surface of a liposome. Original composition of the aqueous solution: x mol dm⁻³ R6G⁺ (2.5×10^{-4} , 5.0×10^{-4} , 7.5×10^{-4} or 1×10^{-3}), 1.0×10^{-1} mol dm⁻³ phosphate buffer (pH 7) and 1.0×10^{-3} mol dm⁻³ NaCl. PC and cholesterol concentration add as liposome: 3.3×10^{-3} mol dm⁻³.

Evaluation of K_D , K_{ip} and K_{ads} by analysing R

The *R* values were calculated from the experimental results of Fig. S1 according to Eqs. (S1–S3). *R* is expressed by Eq. $(S4)^4$.

$$R = K_{ip}K_{D} \Big[BF_{4}^{-} \Big]_{W} + \sqrt{\frac{K_{D}}{[R6G^{+}]_{W}}} \sqrt{\Big[BF_{4}^{-} \Big]_{W}} + \frac{2N_{ads}^{T}K_{ad}}{x \Big(1 + K_{ad} [R6G^{+}]_{W} \Big)}$$
(S4)

The obtained *R* was plotted against $([BF_4^-]_W)^{1/2}$, as shown in Fig. S3 and analyzed using Eq. (S4) by

quadratic curve approximation.

Fig. S3 Dependence of *R* estimated from $([R6G^+]_{ref} - [R6G^+]_{mea})$ in Fig. S1 upon the concentration of the BF₄⁻. The solid line indicates an approximate curve analyzed according to Eq. (S4).

Reference

- B. I. Escher and R. P. Schwarzenbach, *Environ. Sci. Technol.*, 1996, **30**, 260–270.
- 2 B. I. Escher, R. P. Schwarzenbach and J. C. Westall, *Environ. Sci. Technol.*, 2000, 34, 3954–3961.
- B. I. Escher, R. P. Schwarzenbach and J. C. Westall, *Environ. Sci. Technol.*, 2000, 34, 3962–3968.
- 4 K. Murakami, K. Hori, K. Maeda, M. Fukuyama and Y. Yoshida, *Langmuir*, 2016, 32, 10678–10684.
- 5 T. X. Xiang and B. D. Anderson, *Biophys. J.*, 1997, 72, 223–237.
- 6 J. M. Nitsche and G. B. Kasting, J. Pharm. Sci., 2013, 102, 2005–2032.