Supporting Information

Laser-induced Graphene Hybrid Photoelectrode for Enhanced Photoelectrochemical Detection of Glucose

Hui Li, Chengxiang Guo, Changchun Liu, Lei Ge,* and Feng Li*

College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao,

266109, People's Republic of China

*Corresponding author: Lei Ge, Feng Li

E-mail: lge@qau.edu.cn, lifeng@qust.edu.cn

Telephone: +86-532-58957855

Figure S1. Raman spectrum of LI-NiEC-CdS-G@ITO photoelectrode.

As shown in Figure S1, the clearly identified D (~1350 cm⁻¹), G (~1582 cm⁻¹), and 2D (~2700 cm⁻¹) peaks confirm the existence of defective or multilayered structure that is the characteristic sign of LIG.¹ The two characteristic Raman peaks at ~299 cm⁻¹ and ~597 cm⁻¹ correspond to the 1LO and 2LO vibration modes of hexagonal LICdS,² respectively, suggesting the successful fabrication of both LIG and LICdS in LI-NiEC-CdS-G nanocomposite.

Figure S2. High resolution (A) O 1s and (B) S 2p XPS spectra of LI-NiEC-G@ITO.

Figure S3. SEM images of (A-C) LIG@ITO and (D-F) LI-CdS-G@ITO photoelectrode with different magnifications.

Figure S4. High resolution TEM image of Ni⁰-NiS hybrid in LI-NiEC-CdS-G nanocomposite.

Figure S5. CVs of (A) LIG@ITO and (B) LI-CdS-G@ITO electrode in 0.1 M KOH (a) without and (b) with 1.0 mM glucose at a scan rate of 50 mV/s.

Employed electrocatalyst@electrode	Linear range	Detection limit	Reference
NiO/SiC@GCE electrode	4 µM to 7.5 mM	0.32 μM	3
NiCo ₂ O ₄ @3D graphene foam electrode	500 nM to 0.59 mM	0.38 µM	4
Ni(OH) _x film@carbon cloth electrode	0.004 to 0.6 mM	0.45 µM	5
Ni ₃ S ₂ /carbon nanotube@Ni foam electrode	30 to 500 µM	1.0 µM	6
Au/TiO ₂ @Ti photoelectrode	1 µM to 10 mM	1.0 µM	7
Au/NiAu multilayered nanowire@ITO photoelectrode	0.005 to 31 mM.	1.0 µM	8
Au/graphene/PAPBA/TiO ₂ @ITO ^a	0.5 to 20 mM &	0.11 mM	9
	20 to 28 mM		
Ni/CdS@TiO2 nanotube array photoelectrode	0.1 to 2mM &	7.98 μΜ	10
	3 to 6 mM		
Nickel-cobalt phosphate@GCE electrode	2 to 4470 µM	0.4 µM	11
Ni ₃ Te ₂ @Ni foam electrode	0.01 to 0.8 mM	0.38 µM	12
Ni/CdS@Ti@TiO2 core-shell nanowire electrode	0.005 to 12 mM,	0.35 µM	13
Ni-MOF/Ni/NiO/C@GCE nanocomposite electrode	4 to 5664 µM	0.8 µM	14
Carbon nanotube-nickel@GCE electrode	$5.0 \ \mu M$ to $2.0 \ m M$	2.0 µM	15
IrO2/NiO core-shell nanowire@GCEelectrode	0.5 μ M to 2.5 mM	0.31 µM	16
Ni nanoparticle@carbon nanofiber paste electrode.	$2 \ \mu M$ to $2.5 \ mM$	1.0 µM	17
NiO@Buckypaper electrode	0.1 to 9 mM	14 μΜ	18
Ni(OH) ₂ nanosheet@Ni foam electrode	0.46 to 2100 µM.	0.46 µM	19
Ni ₃ S ₂ nanosheet@Ni foam electrode	0.005 to 3.0 mM	1.2 μM	20
NiS/Ni(OH)2-NH4PA/PPyNTs@GCE electrodeb	0 to 600 µM	3.1 µM	21
LI-NiEC-CdS-G@ITO photoelectrode	1.0 µM to 1.0 mM	0.4 µM	This work

Table S1. Assay performance comparison of our method with other non-enzyme glucose sensors.

^a PAPBA: poly[3-aminophenylboronic acid]; ^b NH₄PA/PPyNTs: ammonium polyacrylate-functionalized polypyrrole nanotubes

References

- 1 J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson and J. M. Tour, *Nat. Commun.*, 2014, **5**, 5714.
- 2 M. Wang, L. Cai, Y. Wang, F. Zhou, K. Xu, X. Tao and Y. Chai, *J. Am. Chem. Soc.*, 2017, **139**, 4144-4151.
- 3 P. Yang, X. Tong, G. Wang, Z. Gao, X. Guo and Y. Qin, *ACS Appl. Mater. Interfaces*, 2015, 7, 4772-4777.
- 4 M. Wu, S. Meng, Q. Wang, W. Si, W. Huang and X. Dong, *ACS Appl. Mater. Interfaces*, 2015, 7, 21089-21094.
- 5 Q. Wa, W. Xiong, R. Zhao, Z. He, Y. Chen and X. Wang, ACS Appl. Nano Mater., 2019, 2, 4427-4434.
- 6 T.-W. Lin, C.-J. Liu and C.-S. Dai, Appl. Catal. B, 2014, 154-155, 213-220.
- 7 L. Guo, Z. Li, K. Marcus, S. Navarro, K. Liang, L. Zhou, P. D. Mani, S. J. Florczyk, K. R. Coffey, N. Orlovskaya, Y.-H. Sohn and Y. Yang, ACS Sens., 2017, 2, 621-625.
- 8 L. Wang, W. Zhu, W. Lu, X. Qin and X. Xu, Biosens. Bioelectron., 2018, 111, 41-46.
- 9 M. Nallal, G. Anantha Iyengar and K. Pill-Lee, ACS Appl. Mater. Interfaces, 2017, 9, 37166-37183.
- 10 H. Huo, Z. Xu, T. Zhang and C. Xu, J. Mater. Chem. A, 2015, 3, 5882-5888.
- 11 Y. Shu, B. Li, J. Chen, Q. Xu, H. Pang and X. Hu, ACS Appl. Mater. Interfaces, 2018, 10, 2360-2367.
- 12 B. Golrokh Amin, U. De Silva, J. Masud and M. Nath, ACS Omega, 2019, 4, 11152-11162.
- 13 C. Guo, H. Huo, X. Han, C. Xu and H. Li, Anal. Chem., 2014, 86, 876-883.
- 14 Y. Shu, Y. Yan, J. Chen, Q. Xu, H. Pang and X. Hu, ACS Appl. Mater. Interfaces, 2017, 9, 22342-22349.
- 15 T. Choi, S. H. Kim, C. W. Lee, H. Kim, S.-K. Choi, S.-H. Kim, E. Kim, J. Park and H. Kim, *Biosens. Bioelectron.*, 2015, **63**, 325-330.
- 16 J. Wang, L. Xu, Y. Lu, K. Sheng, W. Liu, C. Chen, Y. Li, B. Dong and H. Song, Anal. Chem., 2016, 88, 12346-12353.
- 17 Y. Liu, H. Teng, H. Hou and T. You, Biosens. Bioelectron., 2009, 24, 3329-3334.
- 18 T. Zhu, Y. Zhang, L. Luo and X. Zhao, ACS Appl. Mater. Interfaces, 2019, 11, 10856-10861.
- 19 W. Mao, H. He, P. Sun, Z. Ye and J. Huang, ACS Appl. Mater. Interfaces, 2018, 10, 15088-15095.
- 20 H. Huo, Y. Zhao and C. Xu, J. Mater. Chem. A, 2014, 2, 15111-15117.
- 21 H. Mao, Z. Cao, X. Guo, D. Sun, D. Liu, S. Wu, Y. Zhang and X.-M. Song, ACS Appl. Mater. Interfaces, 2019, 11, 10153-10162.