# **Supporting Information**

## Combined Tetraphenylethylene Fluorogens with Positive Charge for Imaging

## **Capsule-covered Pathogens**

Wenting Ai<sup>a</sup>, Yufan Ma<sup>a</sup>, Zhiqiang Yang<sup>b</sup>, Xiaomin Han<sup>a</sup>, Yuzhi Chen<sup>a</sup>, Kui Zhu<sup>\*b</sup>, Zhuo Wang<sup>\*a</sup>

a State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029, China b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China

#### **Contents:**

- 1. Materials and instruments
- 2. Synthesis of TPE-Py<sup>+</sup> and TPE-Pn<sup>++</sup>
- 3. Synthesis of TPE-Py<sup>++</sup>
- 4. Synthesis of TPE-N<sup>+</sup>
- 5. Bacterial Culture
- 6. Confocal laser scanning microscopy (CLSM) characterization
- 7. The infection of Raw 264.7 cells by K.pneumoniae
- 8. References
- Fig S1. Synthesis routine of AIEgens TPE-Py $^+$  and TPE-Pn $^{++}$ .
- Fig S2. <sup>1</sup>H NMR, <sup>13</sup>C NMR and MALDI-TOF of TPE-Br.
- Fig S3. <sup>1</sup>H NMR, <sup>13</sup>C NMR and MALDI-TOF of TPE-CHO.
- Fig S4. <sup>1</sup>H NMR, <sup>13</sup>C NMR and high resolution mass spectrometry of TPE-Py<sup>+</sup>.
- Fig S5. <sup>1</sup>H NMR, <sup>13</sup>C NMR and high resolution mass spectrometry of TPE-Pn<sup>++</sup>.
- Fig S6. Synthesis routine of AIEgens TPE-Py<sup>++</sup>.
- Fig S7. <sup>1</sup>H NMR and MALDI-TOF of TPE-2Br.
- Fig S8. <sup>1</sup>H NMR and MALDI-TOF of TPE-2CHO.
- Fig S9. <sup>1</sup>H NMR, <sup>13</sup>C NMR and high resolution mass spectrometry of TPE-Py<sup>++</sup>.
- Fig S10. Synthesis routine of AIEgens TPE-N<sup>+</sup>.
- Fig S11. <sup>1</sup>H NMR and MALDI-TOF of TPE-OH.
- Fig S12. <sup>1</sup>H NMR and MALDI-TOF of TPE-OC<sub>3</sub>Br.
- Fig S13. <sup>1</sup>H NMR, <sup>13</sup>C NMR and high resolution mass spectrometry of TPE-N<sup>+</sup>.
- Fig S14. Photostability of PC-TPEgens.
- **Fig S15.** Fluorescent spectra of TPE-Py<sup>+</sup> and TPE-N<sup>+</sup> interacting with bacteria.
- Fig S16. Cell viability of HeLa cells incubated with PC-TPEgens.

Fig S17. CLSM images.

#### 1. Materials and instruments

All reagents and raw materials were purchased at analytical grade and were used directly without further purification. UV–vis absorption were measured on HITACHI U-3900H. Fluorescence spectra were obtained on a HITACHI F-4600 spectrophotometers. Centrifugation was performed using a refrigerated centrifuge (MiniMar-12K+). Bacterial fluorescence imaging was carried out using a laser scanning confocal microscope (Leica SP8).

*Escherichia coli*(*E.coli*), *Staphylococcus aureus*(*S.aureus*) and *Canidia albicans*(*C.albicans*) were purchased from Beijing Tiantan Hospital. *Klebsiella Pneumoniae* (*K. pneumoniae*) were from China Agricultural University. Nutrient broth and LB agar were purchased from Leagene Biotechnology. Raw 264.7 cells were purchased from Cell Resource Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Basic Medical Sciences (IBMS), China.

### **2** Synthesis of TPE-Py<sup>+</sup> and TPE-Pn<sup>++</sup>

SynthesisofTPE-Br:ThesynthesismethodofTPE-Br $(4,4'-(2-(4-bromophenyl)-2-phenylethene-1,1-diyl)bis(methoxybenzene))hasbeendescribedinthepreviousliterature. <sup>1</sup>Theyield of TPE-Bris88%. <sup>1</sup>HNMR(400 MHz, CDCl<sub>3</sub>) <math>\delta$ 7.28 - 7.21 (m, 2H), 7.12 (q, J = 6.4, 6.0 Hz,3H), 7.08 - 7.00 (m, 2H), 6.94 (ddd, J = 13.7, 8.6, 3.6 Hz, 6H), 6.73 - 6.62 (m, 4H), 3.78 (dd, J = 11.0, 1.3 Hz,6H). <sup>13</sup>CNMR (101 MHz, CDCl<sub>3</sub>) $\delta$ 158.28, 158.19, 158.05, 144.29, 143.79, 143.31, 140.78, 140.08, 137.91,136.36, 136.02, 135.93, 133.04, 132.57, 132.55, 132.52, 131.36, 131.34, 130.85, 127.81, 127.66, 126.30, 126.05,120.01, 113.21, 113.03, 112.99, 55.13, 55.09, 1.04.MALDI-TOF calcd for  $C_{28}H_{23}O_2Br$  [M + 2H]+ 470.09, found469.70.

*Synthesis of TPE-CHO:* We successfully synthesized the TPE-CHO (4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)benzaldehyde) based on previous literature.<sup>1</sup> The yield of TPE-Br is 32%. <sup>1</sup>H NMR(400 MHz, CDCl<sub>3</sub>)  $\delta$  9.92 (s, 1H), 7.64 (d, J = 7.9 Hz, 2H), 7.21 (d, J = 7.9 Hz, 2H), 7.15 (d, J = 6.3 Hz, 3H), 7.07 – 7.00 (m, 2H), 6.97 (dd, J = 8.8, 3.3 Hz, 4H), 6.67 (d, J = 8.3 Hz, 4H), 3.77 (d, J = 1.5 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  190.88, 157.55, 157.40, 150.26, 142.46, 141.33, 136.95, 134.60, 134.55, 132.94, 131.63, 131.57, 130.96, 130.31, 128.31, 128.16, 126.93, 125.48, 112.23, 112.04, 54.09, 54.07, 30.94, 29.12, 28.67, 22.07, 21.40, 13.18. MALDI-TOF calcd for C<sub>29</sub>H<sub>24</sub>O<sub>3</sub> [M + 2H]<sup>+</sup> 420.17, found 420.80.

Synthesis of TPE-Py+: 1, 2-dimethylpyridin-1-ium iodide (55.95 mg, 0.24 mmol) and TPE-CHO (50.00 mg,

0.12mmol) were dissolved in anhydrous ethanol (30 mL) and a few drops of triethylamine were added into the mixture. The mixture was refluxed for 48 hours under the protection of N<sub>2</sub>. After the reaction mixture was cooled to room temperature, the mixture was extracted three times with water and CH<sub>2</sub>Cl<sub>2</sub>. Then Na<sub>2</sub>SO<sub>4</sub> was added to dry the mixture. The crude product was purified by a silica gel column using CH<sub>2</sub>Cl<sub>2</sub>/MeOH mixture (10: 1 v/v) to produce a yellow powder (23.5 mg, yield: 31%). <sup>1</sup>H NMR (500 MHz, Chloroform-d)  $\delta$  9.32 (d, J = 6.2 Hz, 1H), 8.34 (t, J = 8.0 Hz, 1H), 8.25 (d, J = 8.4 Hz, 1H), 7.80 (t, J = 6.9 Hz, 1H), 7.59 (d, J = 15.7 Hz, 1H), 7.49 (d, J = 7.9 Hz, 2H), 7.34 (s, 1H), 7.14 (q, J = 7.6 Hz, 5H), 7.08 – 6.91 (m, 6H), 6.67 (dd, J = 12.5, 8.3 Hz, 4H), 4.58 (s, 3H), 3.77 (s, 6H). <sup>13</sup>C NMR (126 MHz, Chloroform-d)  $\delta$  158.50, 158.38, 153.29, 148.49, 146.47, 144.66, 144.42, 143.63, 141.99, 138.10, 135.86, 135.76, 132.70, 132.61, 132.30, 131.94, 131.57, 131.38, 131.24, 128.37, 127.96, 126.50, 125.43, 125.25, 115.42, 113.31, 113.06, 55.21, 55.12, 47.50. HR-MS (ESI, positive) calcd for C<sub>36</sub>H<sub>32</sub>NO<sub>2</sub> (M – I) 510.2428, found 510.2429.

*Synthesis of TPE-Pn*<sup>++</sup>: The reactants 4-methyl-1-(3-(trimethylammonio)propyl) pyridin-1- ium bromide (41.89 mg, 0.12 mmol) and TPE-CHO (50.00 mg, 0.12 mmol) were dissolved in anhydrous ethanol (30 mL) using piperdine as catalyst. Then the mixture was refluxed overnight under the protection of N<sub>2</sub>. After the mixture was cooled to room temperature, remove solvent by evaporated under reduced pressure. The crude product was purified by a silica gel column using MeOH as the eluent to give TPE -Pn<sup>++</sup> as a red powder(46.67 mg,yield:52%). <sup>1</sup>H NMR (400 MHz, Methanol-d<sub>4</sub>)  $\delta$  8.78 (d, J = 6.7 Hz, 2H), 8.08 (d, J = 6.7 Hz, 2H), 7.78 (d, J = 16.3 Hz, 1H), 7.41 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 16.2 Hz, 1H), 7.10 – 6.96 (m, 5H), 6.94 – 6.88 (m, 2H), 6.86 – 6.77 (m, 4H), 6.62 – 6.51 (m, 4H), 4.56 (t, J = 7.7 Hz, 2H), 3.62 (d, J = 0.8 Hz, 6H), 3.52 – 3.44 (m, 2H), 3.12 (s, 9H), 2.61 – 2.43 (m, 2H). <sup>13</sup>C NMR (101 MHz, Methanol-d<sub>4</sub>)  $\delta$  143.92, 132.34, 132.26, 131.86, 131.09, 127.59, 127.56, 123.93, 112.88, 112.71, 62.44, 54.20, 52.61, 48.24, 48.03, 47.81, 47.60, 47.39, 47.18, 46.96, 24.72. HR-MS (ESI, positive) calcd for C<sub>41</sub>H<sub>44</sub>N<sub>2</sub>O<sub>2</sub> (M – 2Br)/2 298.1696, found 298.1697.

#### 3、Synthesis of TPE-Py<sup>++</sup>

*Synthesis of TPE-2Br:* The synthesis method of TPE-2Br (4, 4'-(2,2-bis(4-bromophenyl)ethene-1,1-diyl)bis(methoxybenzene)) has been described in the previous literature.<sup>2</sup> The yield of TPE-2Br is 77%. <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>,  $\delta$ ): 7.80–7.70 (4H, d, J = 8.4 Hz), 7.68–7.53 (4H, m), 7.53–7.44 (4H, m), 6.97–6.95 (4H, d, J = 8.7 Hz), 3.88 (6H, s). MALDI-TOF calcd for C<sub>28</sub>H<sub>22</sub>Br<sub>2</sub>O<sub>2</sub> [M + 2H]<sup>+</sup> 550.29, found 550.70.

Synthesis of TPE-2CHO: The synthesis method of TPE-2CHO (4,

4'-(2,2-bis(4-methoxyphenyl)ethene-1,1-diyl)dibenzaldehyde) has been described in the previous literature.<sup>2</sup> The yield of TPE-2CHO is 36%.<sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>,  $\delta$ ): 9.90 (2H, s), 7.65–7.62 (4H, m), 7.17–7.15 (4H, m), 6.94–6.91(4H, m), 6.70–6.68 (2H, d, J = 2.2 Hz), 6.68–6.65 (2H, d, J = 2.6 Hz), 3.74 (6H, s). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>,  $\delta$ ): 191.76, 158.96, 150.33, 148.52, 134.92, 134.30, 132.70, 132.65, 132.00, 129.41, 129.34, 113.35, 113.32, 113.30, 55.08. MALDI-TOF calcd for C<sub>30</sub>H<sub>24</sub>O<sub>4</sub> (M + 2H)<sup>+</sup> 448.17, found 448.16.

*Synthesis of TPE-Py*<sup>++</sup>: The reactants 1, 4-Dimethylpyridinium iodide (206.8 mg, 0.88 mmol) and THE-2CHO (100.00 mg, 0.24 mmol) were first dissolved in anhydrous ethanol (50 mL) and a few drops of triethylamine were added. The reaction mixture was refluxed for 48 hours under the protection of N<sub>2</sub>. After the reaction mixture was cooled to room temperature, the mixture was extracted three times with water and CH<sub>2</sub>Cl<sub>2</sub>. Then Na<sub>2</sub>SO<sub>4</sub> was added to dry. The crude product was purified by a silica gel column using CH<sub>2</sub>Cl<sub>2</sub>/MeOH mixture (15 : 1 v/v) as the eluent to produce a yellow powder (40.76 mg, yield: 21%). <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  8.86 (d, J = 6.3 Hz, 4H), 8.21 (d, J = 6.7 Hz, 2H), 8.02 – 7.29 (m, 8H), 7.10 – 6.79 (m, 10H), 6.74 (d, J = 8.8 Hz, 4H), 4.29 (d, J = 19.1 Hz, 6H), 3.75 – 3.67 (m, 6H). <sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>)  $\delta$  158.14, 152.40, 145.80, 145.02, 144.44, 140.11, 135.21, 133.20, 132.18, 132.08, 131.59, 127.90, 127.84, 127.78, 123.39, 113.36, 55.19, 55.02, 55.01, 47.27, 46.93. HR-MS (ESI, positive) calcd for C<sub>44</sub>H<sub>44</sub>N<sub>2</sub>O<sub>2</sub> (M – 2I)/2 314.1539, found 314.1540.

#### 4、Synthesis of TPE-N<sup>+</sup>

*Synthesis of TPE-OC<sub>3</sub>Br:* The reactants 1, 3-dibromopropane(146.90 mg, 0.73 mmol), TPE-OH (4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)phenol) (50 mg, 0.12 mmol) and K<sub>2</sub>CO<sub>3</sub>(169.30 mg, 1.22 mmol) were dissolved in dry DMF (30 mL). Then the mixture was refluxed for 24 hours under the protection of N<sub>2</sub>. After the reaction mixture was cooled to room temperature, the mixture was extracted three times with water and CH<sub>2</sub>Cl<sub>2</sub>. Organic phase drying with anhydrous Na<sub>2</sub>SO<sub>4</sub>, remove solvent by evaporated under reduced pressure. The crude product was purified by a silica gel column using PE / CH<sub>2</sub>Cl<sub>2</sub> mixture (3: 1 v/v) as the eluent to produce a White powder (56.93 mg, yield 88%).<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.09 (d, *J* = 7.2 Hz, 3H), 7.02 (d, *J* = 7.4 Hz, 2H), 6.93 (dd, *J* = 12.8, 8.4 Hz, 6H), 6.63 (qd, *J* = 7.3, 2.5 Hz, 6H), 4.03 (t, *J* = 5.8 Hz, 2H), 3.74 (d, *J* = 8.8 Hz, 6H), 3.58 (t, *J* = 6.5 Hz, 2H), 2.28 (p, *J* = 6.2 Hz, 2H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  157.94, 156.92, 144.47, 139.30, 136.96, 136.63, 136.56, 132.56, 131.42, 127.63, 126.03, 113.64, 113.06, 112.95, 65.13, 55.11, 55.08, 32.50, 30.11. MALDI-TOF calcd for C<sub>31</sub>H<sub>29</sub>BrO<sub>3</sub> (M + 2H)<sup>+</sup> 528.13, found 529.90.

Synthesis of TPE-N<sup>+</sup>: The reactants THE-CO<sub>3</sub>Br (100 mg, 0.19 mmol) and Me<sub>3</sub>N (33.55 mg, 0.57 mmol)

were dissolved in dry THF (30 mL). Then the mixture was stirred at room temperature for 2 days under the protection of N<sub>2</sub>. After the reaction was completed, the mixture was filtered and washed with an excess of THF solution to give a white solid(79.88 mg, yield 83%).<sup>1</sup>H NMR (400 MHz, Methanol-d<sub>4</sub>)  $\delta$  7.12 – 7.06 (m, 3H), 7.02 – 6.97 (m, 2H), 6.95 – 6.88 (m, 6H), 6.73 – 6.62 (m, 6H), 4.06 (t, J = 5.7 Hz, 2H), 3.73 (d, J = 7.8 Hz, 6H), 3.63 – 3.56 (m, 2H), 3.20 (s, 9H), 2.28 (dq, J = 11.5, 5.6 Hz, 2H). <sup>13</sup>C NMR (101 MHz, Methanol-d<sub>4</sub>)  $\delta$  158.23, 136.47, 132.26, 132.19, 131.01, 127.30, 125.78, 113.37, 112.70, 112.64, 64.11, 54.18, 54.16, 52.31, 52.27, 52.23, 48.24, 48.03, 47.82, 47.61, 47.39, 47.18, 46.97, 22.94. HR-MS (ESI, positive) calcd for C<sub>34</sub>H<sub>38</sub>NO<sub>3</sub> (M – Br) 508.2852, found 508.2849.

### 5, Bacterial Culture

First, a single colony of *Klebsiella pneumoniae* (*K. pneumoniae*) on the solid nutrient broth medium was transferred to 10 ml of liquid LB medium and cultured at 37 °C for 12 hours. The bacterial concentration was determined by measuring the optical density ( $OD_{600}$ ) at 600 nm using UV Spectrophotometer. Then, the bacteria were diluted to  $OD_{600}=0.5$ , the bacteria were transferred to 1.5 mL EP tube. The bacteria were centrifuged at 10,000 rpm for 5 min. After centrifugation, the supernatant was removed and washed with phosphate buffer solution (PBS) for three times. The precipitate *K. pneumoniae* was suspended again in PBS for later usage. *Staphylococcus aureus* (*S.aureus*), *Escherichia coli* (*E.coli*) and *Candida albicans* (*C.albicans*) were cultured under the same conditions and operations as *K. pneumoniae*.

#### 6. Confocal laser scanning microscopy (CLSM) characterization:

#### 1) Bacterial imaging

For fluorescence imaging of bacteria, we first need to prepare a probe solution, which is prepared by dissolving four probes with dimethyl sulfoxide to prepare an initial concentration of  $10^{-2}$  M, and diluting them to a concentration of 20  $\mu$ M using a phosphate buffer solution. Then, 200  $\mu$ L of the treated bacterial solution and an equal amount of the probe solution were added to a sterilized EP tube and incubated at room temperature for 30 minutes. After that, 10  $\mu$ L of the stained bacteria was transferred to clean glass slide and covered with coverslips for fixation. Images were collected using a 405 nm laser and a 100-fold mirror under confocal laser scanning microscopy.

#### 2) Mixed bacteria imaging

Equal amounts of E. coli and K. pneumoniae were mixed in PBS. Then, 200 µL of the bacterial mixture and

an equal amount of probe TPE-N<sup>+</sup> solution were added to the sterilized EP tube and incubated at room temperature for 1 h. Then, 200 uL probe TPE-Py<sup>++</sup> solution was added and incubated for 1h at room temperature. The bacteria were harvested by centrifugation (10000 rpm, 3 min) and they were again suspended in PBS. Then 10  $\mu$ L of the stained bacterial solution was transferred to a clean glass slide and covered with coverslips for fixation. Images were collected by confocal laser scanning microscopy and excited using 405 nm laser.

### 7、 The infection of Raw 264.7 cells by K.pneumoniae:

First, 200 µl of *K. pneumoniae* that had been centrifuged was taken, and an equal amount of probe TPE-Py<sup>++</sup> solution (20 µM) was added. Incubate for 30 minutes at room temperature. Bacteria were harvested by centrifugation (1000 rpm, 3 min). The supernatant was removed, resuspended in 100 µL of PBS, and then mixed by adding 900 µL of DMEM. Finally, 1 mL of the prepared bacterial solution was added into the Raw 264.7 cells and incubated at 37 °C for 30 min. Images of bacterial infection at different times were collected by confocal microscopy using 405 nm laser and 40-fold mirror. The probe TPE-Pn<sup>++</sup> labeled *K. pneumoniae* infected the Raw 264.7 cells with the same conditions as the probe TPE-Py<sup>++</sup>.

#### 8、References

- 1. Y. Chen, W. Ai, X. Guo, Y. Li, Y. Ma, L. Chen, H. Zhang, T. Wang, X. Zhang and Z. Wang, Small, 2019, 15.
- 2. Y. Ma, H. Wang, S. Su, Y. Chen, Y. Li, X. Wang and Z. Wang, Analyst, 2019, 144, 3381-3388.



Fig S1. Synthesis routine of AIEgens TPE-Py<sup>+</sup> and TPE-Pn<sup>++</sup>.







Fig S2. <sup>1</sup>H NMR, <sup>13</sup>C NMR and MALDI-TOF of TPE-Br.





Fig S3. <sup>1</sup>H NMR, <sup>13</sup>C NMR and MALDI-TOF of TPE-CHO.







Fig S4. <sup>1</sup>H NMR, <sup>13</sup>C NMR and high resolution mass spectrometry of TPE-Py<sup>+</sup>.





Fig S5. <sup>1</sup>H NMR, <sup>13</sup>C NMR and high resolution mass spectrometry of TPE-Pn<sup>++</sup>.



Fig S6. Synthesis routine of AIEgens TPE-Py<sup>++</sup>.



D:\DATA\2016\201612\20161205\2016120510\0\_B17\1

printed: 12/5/2016 3:36:36 PM

.



# MALDI-TOF,CCA,TPE-2Br,20161205







#### **Elemental Composition Report**

Tolerance = 100.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 2 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

| Minimum:<br>Maximum:<br>Mass<br>448.1669 | 70.00<br>100.00<br>RA<br>100.00 | Calc. Mass<br>448.1675 | 200.0<br>mDa<br>-0.6 | 100.0<br>PPM<br>-1.2 | -1.5<br>50.0<br>DBE<br>19.0 | Score<br>1 | Formula<br>C30 H24 O4 |
|------------------------------------------|---------------------------------|------------------------|----------------------|----------------------|-----------------------------|------------|-----------------------|
|                                          | 2                               |                        |                      |                      |                             |            |                       |

## Fig S8. <sup>1</sup>H NMR, and MALDI-TOF of TPE-2CHO.



S18

# ESI(P),1,20190222

#### Analysis Info

Analysis Name D:\Data\ESI\2019\2019-02\0222\1\_000002.d

#### Sample Name

Polarity Broadband Low Mass

1

#### Instrument solariX Acquisition Parameter Calibration Date Tue Feb 19 10:22:20 Positive 2019 57.7 m/z 20 Acquired Scans

Operator

Acquisition Date 2/22/2019 11:17:27 AM



Fig S9. <sup>1</sup>H NMR, <sup>13</sup>C NMR and high resolution mass spectrometry of TPE-Py<sup>++</sup>.



Fig S10. Synthesis routine of AIEgens TPE-N<sup>+</sup>.





Fig S11. <sup>1</sup>H NMR, and MALDI-TOF of TPE-OH.









# ESI(P),1,20181116

D:\Data\ESI\2018\2018-11\1116\1\_000001.d

Analysis Info Analysis Name

Acquisition Date 11/16/2018 9:15:38 AM

200022000

solariX Instrument Sample Name 1 Acquisition Parameter Acquisition Mode Polarity Broadband Low Mass Single MS Positive 57.7 m/z Wed Nov 14 09:46:54 Acquired Scans 1 Calibration Date 2018 Broadband High Mass 1000.0 m/z Intens. x10<sup>9</sup> 1.2 +MS + 508.28499 1.0 0.8 0.6 0.4 0.2 0.0 700 800 900 400 600 m/z 200 300 500 100 +MS Intens. x10<sup>9</sup> 508.28499 1+ 1.25 1.00 509.28891 1+ 0.75 0.50 510.29230 1+ 0.25 0.00 510.0 510.5 511.0 511.5 m/z 507.0 507.5 508.0 508.5 509.0 509.5 1\_000001.d: +MS mSigma e<sup>-</sup>Conf N-Rule Mean err [ppm] rdb err [ppm] Ion Formula Score m/z Meas. m/z # ok 16.5 508.284986 C34H38NO3 100.00 508.284621 0.7 -1.1 6.9 even 1

Fig S13. <sup>1</sup>H NMR, <sup>13</sup>C NMR and high resolution mass spectrometry of TPE-N<sup>+</sup>.

S24



Fig S14. Photostability of PC-TPEgens (TPE-Py<sup>++</sup>, TPE-Pn<sup>++</sup>, TPE-Py<sup>+</sup> and TPE-N<sup>+</sup>) under exposure to 405 nm laser with the laser intensity of 50%.



Fig S15. Fluorescent spectra of TPE-Py<sup>+</sup> and TPE-N<sup>+</sup> interacting with bacteria.



Fig S16. Cell viability of HeLa cells incubated with TPE-Py<sup>++</sup>, TPE-Pn<sup>++</sup>, TPE-Py<sup>+</sup> and TPE-N<sup>+</sup> for 24 h, respectively.



Fig S17: a) CLSM images of *K. pneumoniae* incubated with Syto 9, FITC, and Phrodo red, respectively. b) CLSM images of *E. coli*, *C. albicans*, and *S. aureus* incubated with Syto 9, FITC, and Phrodo red, respectively.