Electronic Supplementary Information

One-Incubation One-Hour Multiplex ELISA Enabled by Aqueous Two-Phase Systems

Mintra Tongdee, ^{a,b} Cameron Yamanishi,^b Midori Maeda,^b Taisuke Kojima,^b John Dishinger,^c Rattikan Chantiwas^a and Shuichi Takayama^{b*}

 ^a Department of Chemistry and Center of Excellence for Innovation in Chemistry and Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs),
 Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
 ^b Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia, USA
 ^c PHASIQ, Inc., Ann Arbor, Michigan 48109, USA

* Corresponding author: <u>takayama@gatech.edu</u>

Content

1. Optimization of one-incubation one-hour ATPS ELISA

- 1.1 PEG-DEX concentration
- 1.2 PHASIQ plate
- 1.3 Incubation time
- 1.4 Blocking buffer

2. Previous reports of ELISA for cytokine detection

3. Companion image processing software as an ImageJ plugin

ESI 1. Optimization of one-incubation one-hour ATPS ELISA

1.1 PEG-DEX concentration

Fig. S1 Effect of PEG-DEX concentration on FITC-dAb retention in DEX over the course of 1 hour at room temperature. PEG-DEX concentration during the assay (%w/w); (a) 9%PEG-0.81%DEX, (b) 5%PEG-0.81%DEX, (c) 9%PEG-0.45%DEX, (d) 5%PEG-0.45%DEX, (e) 5%PEG-0.27%DEX, (f) 3%PEG-0.45%DEX and (g) 3%PEG-0.27%DEX.

See Fig. S2 (Section 1.2) for picture of PHASIQ plate used for this study.

Fig. S2 Picture of PHASIQ plate with zoomed in picture. A single well contained nine microbasins.

1.3 Incubation time

Fig. S3 Signal, noise and ratio of S/N for incubation time of 15 minutes, 1 hour and 4 hours.

Fig. S4 Calibration data for analysis of IL-6 with one-incubation ATPS ELISA using different incubation time; (a) 4 hours, (b) 1 hour and (c) 15 minutes and the calculated LODs were 180, \sim 1 and 340 pg mL⁻¹, respectively. Data shown are mean chemiluminescence signals from three replicates, and error bars are standard deviations (SDs).

1.4 Blocking buffer

Fig. S5 Calibration data for analysis of IL-6 with one-incubation ATPS ELISA using different types of blocking buffer; (a) 0.1%Chonblock/ 0.05%goat serum, (b) 1×StabilCoat, (c) 3×StabilCoat, (d) 5%BSA and (e) 5%goat serum and the calculated LODs were 100, 20, ~1, 100 and 60 pg mL⁻¹, respectively. Data shown are mean chemiluminescence signals from three replicates, and error bars are standard deviations (SDs).

ESI 2. Previous reports of ELISA for cytokine detection

Table S1 Literature review of various detection techniques for multiplex cytokine detection, assay information included; types of cytokines,

 sample volume, assay time and LOD.

Detection technique	Types of cytokines	Sample volume	Assay time	LOD (pg mL ⁻¹)	Ref.
FI	IL-6, IFN-γ	20 µL	2 hours	7.8	Wang and Zhang 2006 ¹
FI	VEGF, EGF, IP10, IL-8, MCP-1, IL-6, TIMP-1, MIP-1β, RANTES, Eotaxin-2	100 µL	2.5 hours	0.01-8	Blicharz et. al. 2009 ²
FI	IL-2, IL-4, IL-6, IL-10, IFN-γ, TNF-α	50 µL	3 hours	40.96	Hall et. al. 2015 ³
EC	VEGF, IL-8, TIMP-1	N/A	2.5 hours	N/A	Deiss et. al. 2009 ⁴
EC	ΤΝΓ-α, ΙΓΝ-γ, ΙL-2	4 μL	1 hours	N/A	Stybayeva et. al. 2010 ⁵
EC	IL-1α, L-1β, L-2, IL-4, IL-6, IL-8, IL-10, VEGF, IFN-γ, EGF, MCP-1, TNF-α	100 µL	2 hours	0.12-2.12	FitzGerald et. al. 2007 ⁶
SPR	IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ	1 μL	40 minutes	5-20	Chen et. al. 2015 ⁷

Detection technique	Types of cytokines	Sample volume	Assay time	LOD (pg mL ⁻¹)	Ref.
SPR	IL-1β, L-6, TNF-α	N/A	10 minutes	200-1,300	Battaglia et. al. 2005 ⁸
MR	IL-2, IL-6, IL-8	N/A	90 minutes	≤1	Kindt et. al. 20139
Spectrocolorimeter	IL-6, IL-8	N/A	45 minutes	100	Miwa et. al. 2009 ¹⁰
AIR	IL-1α, L-1β, L-6, IL-8, IL-10, IFN-γ, TNF-α	N/A N/A		< 10	Carter et. al. 20 ¹¹
Bioluminescence (bioassay)	IL-6, IL-8, THF-α	N/A	N/A	37-184	Yu et. al. 2019 ¹²
Imager of the automated integrated microfluidic device	VEGF, IP-10, IL-8, EGF, MMP-9, IL-1β	10 µL	70 minutes	4-8,624	Nie et. al. 2014 ¹³
Fluorescent Bead-Based Luminex Cytokine Assays	Bead-Based IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL-6, okine Assays IL-7, IL-12-p70, IL-13, IL-17, GM-CSF, 25–50 MCP-1		2-3 hours	N.A.	Joel et. al. 2008 ¹⁴
Quanterix SIMOA instrumentation	IL-6, TNF-α, IL-1β, IL-8	100 µL	45 minutes	N.A.	Joachim et. al. 2015 ¹⁵

Detection technique	Types of cytokines	Sample volume	Assay time	LOD (pg mL ⁻¹)	Ref.		
Aushon SearchLight Protein Array Technology (Chemiluminescent label)	IL-1α, IL-1β, IL-6, TNF-α, VEGF, IL-8/MIP-2	100 µL	1-2 hours	N.A.	Dennis et. al. 2010 ¹⁶		
Chemiluminescence (ELISA Microarray)	IL-1β, IL-1ra, IL-6, IL-8, MCP-1, TNF-α	50 µL	4.5 hours	15-320	Urbanowska et. al. 2006 ¹⁷		
Chemiluminescence (ELISA)	IL-6, IL-10, TNF-α, IL-1β, CCL18 100 μL 1 hour 1.82-7.63		1.82-7.63	This work			
FI: Fluorescence immunoassay EC: Electrochemical method SPR: Surface plasmon resonance MR: Microring resonator based immunosensing							

AIR: Arrayed imaging reflectometry N/A: Not available

1

ESI 3. Companion image processing software as a Fiji image J plugin

This plugin deconvolves an image of a PHASIQ-layout plate. Software details of custom Fiji image J plugin is given below.

📴 IL-6 l	.OD.tif (18	196)							
5.16x3.85 incl	ies (696x520);	, 16-bit; 707K	•				1. Ti ai m	he plugin guide nd determinat nicrobasins to g	es the user through image rotation ion of the size and locations of generate a plate-wide map.
	0	0	\odot		O Anal	vzor Results			C
				Export to Excel V Open File on Export			Export	 The plugin then measured the average 	
$\mathbf{\Theta}$		$\mathbf{\nabla}$	Column	Row	Microbasin Label	Intensity	StdDev		
			122	1	A	5	7145358.0	24242.32674327188	cnemiluminescence
				1	В	5	4574092.0	16532.716025658694	intensity for each
		1	1	С	5	2013680.0	7023.245983372411	microbasin, exporting	
			\sim	1	D	5	1201348.0	3952.2273081058556	an Excel sheet with
\bigcirc \bigcirc			1	E	5	982464.0	3167.829983122191	all excersiveet with	
		1 1 1	1	F	5	539804.0	1612.537882624684	annotated microwells	
			1	G	5	414804.0	1233.0405314613217	and microbasin	
			н	5	309116.0	905.4306069584926	intensities		
			\sim	2	A	5	7724410.0	25438.68091252201	interisitiesi
			\bigcirc	2	В	5	3634959.0	13921.362625331285	
				2	С	5	1713016.0	6068.928171622032	
00		\circ \circ	2	D	5	901064.0	3161.2071509126654		
			2	E	5	689520.0	2329.3406343710385		
				2	F	5	495560.0	1536.4198284676006	
	\cap)	2	G	5	430012.0	1211.0096145005057	
	2 Н	Н	5	296184.0	919.3759071813021				

References

- 1. C. Wang and Y. Zhang, Sens. Actuators, B, 2006, 120, 125-129.
- 2. T. M. Blicharz, W. L. Siqueira, E. J. Helmerhorst, F. G. Oppenheim, P. J. Wexler, F. F. Little and D. R. Walt, *Anal. Chem.*, 2009, **81**, 2106-2114.
- 3. S. A. Hall, D. Stucke, B. Morrone, D. Lebelt and A. J. Zanella, *MethodsX*, 2015, **2**, 241-248.
- 4. F. Deiss, C. N. LaFratta, M. Symer, T. M. Blicharz, N. Sojic and D. R. Walt, *J. Am. Chem. Soc.*, 2009, **131**, 6088-6089.
- 5. G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan and A. Revzin, *Anal. Chem.*, 2010, **82**, 3736-3744.
- 6. S. P. FitzGerald, R. I. McConnell and A. Huxley, J. Proteome Res., 2008, 7, 450-455.
- 7. P. Chen, M. T. Chung, W. McHugh, R. Nidetz, Y. Li, J. Fu, T. T. Cornell, T. P. Shanley and K. Kurabayashi, *ACS Nano*, 2015, **9**, 4173-4181.
- 8. T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway and K. S. Booksh, *Anal. Chem.*, 2005, 77, 7016-7023.
- 9. J. T. Kindt, M. S. Luchansky, A. J. Qavi, S.-H. Lee and R. C. Bailey, Anal. Chem., 2013, 85, 10653-10657.
- 10. K. Miwa, N. Shibayama, T. Moriguchi, J. Goto, M. Yanagisawa, Y. Yamazaki, G. Jung and K. Matsuda, *J. Clin. Lab. Anal.*, 2009, **23**, 40-44.
- 11. J. A. Carter, S. D. Mehta, M. V. Mungillo, C. C. Striemer and B. L. Miller, *Biosens. Bioelectron.*, 2011, 26, 3944-3948.
- 12. X. Yu, D. Scott, E. Dikici, S. Joel, S. Deo and S. Daunert, *Analyst*, 2019, 144, 3250-3259.
- 13. S. Nie, W. H. Henley, S. E. Miller, H. Zhang, K. M. Mayer, P. J. Dennis, E. A. Oblath, J. P. Alarie, Y. Wu and F. G. Oppenheim, *Lab on a Chip*, 2014, 14, 1087-1098.
- 14. J. F. Djoba Siawaya, T. Roberts, C. Babb, G. Black, H. J. Golakai, K. Stanley, N. B. Bapela, E. Hoal, S. Parida, P. van Helden and G. Walzl, *PLoS One*, 2008, **3**, e2535.
- 15. J. D. Pleil, M. M. Angrish and M. C. Madden, J. Breath Res., 2015, 9, 047108.
- 16. D. R. Trune, B. E. Larrain, F. A. Hausman, J. B. Kempton and C. J. MacArthur, Hear. Res., 2011, 275, 1-7.
- 17. T. Urbanowska, S. Mangialaio, C. Zickler, S. Cheevapruk, P. Hasler, S. Regenass and F. Legay, *J. Immunol. Methods*, 2006, **316**, 1-7.