Evaluation of the electroanalytical performance of carbon-on-gold films prepared by electron-beam evaporation

Thuy P. Nguyen, Richard L. McCreery, and Mark T. McDermott*

[†]Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2N4, Canada

* To whom correspondence should be addressed. E-mails: mmcdermo@ualberta.ca

Figure S1. Raman spectrum of eC/Au (514.5 nm, 30 mW, 100 s, 50x). Breit-Wigner-Fano (BWF) and Lorentzian fittings for D and G bands respectively results in excellent deconvolution with low residuals as suggested by Ferrari and Robertson.¹ The relative positions of D (1372 cm⁻¹) and G (1559 cm⁻¹) bands were used to estimate sp³ content.¹

Figure S2. XPS survey spectrum of freshly prepared eC/Au.

Figure S3. XPS C1s high resolution spectrum of freshly prepared eC/Au. The C1s peak can be decomposed into 4 components. The peaks at 284.3 eV and 285.3 eV are assigned to sp^2 and sp^3 hybrids, respectively.²

Figure S4. (A) AFM images of Si/Cr₂/Au₄₂ (Au) and Si/Cr₂/Au₄₂/eC₁₀ (eC/Au) films (the subscripts indicate thicknesses in nm). (B) AFM line scan profiles of the surfaces shown in panel A.

Figure S5. Background voltammograms of eC/Au and polished GC in $H_2SO_4 0.05 \text{ M}$, v = 0.1 V/s. The current is normalized to the electrode area to give current density. The black arrow indicates the scan direction.

Figure S6. Scan rate dependent background current for eC/Au in 1 M KCl. The black arrow indicates the scan direction.

Figure S7. Scan rate dependent background current for eC/Au in 1 M HClO₄. The black arrow indicates the scan direction.

Figure S8. Representative plot of $\Delta E_{p,obs}$ vs. cathodic peak current from cyclic voltammetry of $Fe(CN)_6^{3-}$ (1 M KCl, v = 0.1 V/s) at an eC/Au film. The concentration of $Fe(CN)_6^{3-}$ was varied from 1 to 16 mM to affect the different peak currents. The slope of each least-squares, linear fit yields $2R_u$.

The effects of electrode resistance on electron transfer kinetics at pyrolyzed photoresist films (PPF) were observed in a report by Ranganathan et al.³ Specifically, ΔE_p of Fe(CN)₆^{3-/4-} and Ru(NH₃)₆^{3+/2+} increased with higher concentrations, implying a significant contribution from the iR drop in the PPF electrode due to its thinness. In a later report,⁴ they noted that the resistance within the PPF increases the observed peak separation according to

$$\Delta E_{p,corrected} = \Delta E_{p,observed} - 2 |i| R_u$$
(1)

where i the peak current in amperes, R_u is the uncompensated cell resistance in ohms, $\Delta E_{p,observed}$ is the observed ΔE_p in the presence of the uncompensated cell resistance in volts, and $\Delta E_{p,corrected}$ is the corrected ΔE_p in volts.

Rearranging eq. (1), we obtain

 $\Delta E_{p,observed} = 2 |i| R_u + \Delta E_{p,corrected}$

In our previous work,⁵ we reported that a plot of $\Delta E_{p,observed}$ vs. i from voltammograms at a

common scan rate would yield a linear relationship, in which the slope of the fit equals to 2R_u.

The concentrations of Fe(CN) $_{6}^{3-}$ can be varied to affect the different peak currents. Since $i_{pc}/i_{pa} \sim$

1 for $Fe(CN)_{6^{3-}}$ at eC/Au electrodes, either i_{pc} or i_{pa} can be used in the calculations.

References

- Ferrari, A. C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. *Phys. Rev. B* 2000, *61* (20), 14095–14107. https://doi.org/10.1103/PhysRevB.61.14095.
- (2) Díaz, J.; Paolicelli, G.; Ferrer, S.; Comin, F. Separation of the Sp 3 and Sp 2 Components in the C1 s Photoemission Spectra of Amorphous Carbon Films. *Phys. Rev. B* 1996, 54 (11), 8064–8069. https://doi.org/10.1103/PhysRevB.54.8064.
- (3) Ranganathan, S.; McCreery, R.; Majji, S. M.; Madou, M. Photoresist-Derived Carbon for Microelectromechanical Systems and Electrochemical Applications. *J. Electrochem. Soc.* 2000, 147 (1), 277. https://doi.org/10.1149/1.1393188.
- (4) Ranganathan, S.; McCreery, R. L. Electroanalytical Performance of Carbon Films with Near-Atomic Flatness. *Anal. Chem.* 2001, 73 (5), 893–900. https://doi.org/10.1021/ac0007534.
- (5) Blackstock, J. J.; Rostami, A. A.; Nowak, A. M.; McCreery, R. L.; Freeman, M. R.; McDermott, M. T. Ultraflat Carbon Film Electrodes Prepared by Electron Beam Evaporation. *Anal. Chem.* 2004, *76* (9), 2544–2552. https://doi.org/10.1021/ac035003j.